
INTERNATIONAL COMPUTER SCIENCE INSTITUTE I1947 Center St. � Suite 600 � Berkeley, California 94704-1198 � (510) 643-9153 � FAX (510) 643-7684

A Gentle Tutorial of the EM Algorithm
and its Application to Parameter

Estimation for Gaussian Mixture and
Hidden Markov Models

Jeff A. Bilmes (bilmes@cs.berkeley.edu)
International Computer Science Institute

Berkeley CA, 94704
and

Computer Science Division
Department of Electrical Engineering and Computer Science

U.C. Berkeley
TR-97-021
April 1998

Abstract
We describe the maximum-likelihood parameter estimation problem and how the Expectation-
Maximization (EM) algorithm can be used for its solution. We first describe theabstract
form of the EM algorithm as it is often given in the literature. We then develop the EM pa-
rameter estimation procedure for two applications: 1) finding the parameters ofa mixture of
Gaussian densities, and 2) finding the parameters of a hidden Markov model (HMM)(i.e.,
the Baum-Welch algorithm) for both discrete and Gaussian mixture observationmodels.
We derive the update equations in fairly explicit detail but we do not prove any conver-
gence properties. We try to emphasize intuition rather than mathematical rigor.

ii

1 Maximum-likelihood

Recall the definition of the maximum-likelihood estimation problem. We have a density functionp(xj�) that is governed by the set of parameters� (e.g.,p might be a set of Gaussians and� could
be the means and covariances). We also have a data set of sizeN , supposedly drawn from this
distribution, i.e.,X = fx1; : : : ;xNg. That is, we assume that these data vectors are independent and
identically distributed (i.i.d.) with distributionp. Therefore, the resulting density for the samples is

p(Xj�) = NYi=1 p(xij�) = L(�jX):
This functionL(�jX) is called the likelihood of the parameters given the data, orjust the likelihood
function. The likelihood is thought of as a function of the parameters� where the dataX is fixed.
In the maximum likelihood problem, our goal is to find the� that maximizesL. That is, we wish
to find�� where �� = argmax� L(�jX):
Often we maximizelog(L(�jX)) instead because it is analytically easier.

Depending on the form ofp(xj�) this problem can be easy or hard. For example, ifp(xj�)
is simply a single Gaussian distribution where� = (�; �2), then we can set the derivative oflog(L(�jX)) to zero, and solve directly for� and�2 (this, in fact, results in the standard formulas
for the mean and variance of a data set). For many problems, however, it is not possible to find such
analytical expressions, and we must resort to more elaborate techniques.

2 Basic EM

The EM algorithm is one such elaborate technique. The EM algorithm [ALR77, RW84, GJ95, JJ94,
Bis95, Wu83] is a general method of finding the maximum-likelihood estimate of the parameters of
an underlying distribution from a given data set when the data is incomplete or has missing values.

There are two main applications of the EM algorithm. The first occurs when the data indeed
has missing values, due to problems with or limitations of the observation process. The second
occurs when optimizing the likelihood function is analytically intractable but when the likelihood
function can be simplified by assuming the existence of and valuesfor additional butmissing (or
hidden) parameters. The latter application is more common in the computational pattern recognition
community.

As before, we assume that dataX is observed and is generated by some distribution. We callX theincomplete data. We assume that a complete data set existsZ = (X ;Y) and also assume (or
specify) a joint density function:p(zj�) = p(x;yj�) = p(yjx;�)p(xj�)
.

Where does this joint density come from? Often it “arises” from the marginal density functionp(xj�) and the assumption of hidden variables and parameter value guesses (e.g., our two exam-
ples, Mixture-densities and Baum-Welch). In other cases (e.g., missing data values in samples of a
distribution), we must assume a joint relationship between the missing and observed values.

1

With this new density function, we can define a new likelihood function,L(�jZ) = L(�jX ;Y) =p(X ;Yj�), called the complete-data likelihood. Note that this function is in fact a random variable
since the missing informationY is unknown, random, and presumably governed by an underlying
distribution. That is, we can think ofL(�jX ;Y) = hX ;�(Y) for some functionhX ;�(�) whereX
and� are constant andY is a random variable. The original likelihoodL(�jX) is referred to as the
incomplete-data likelihood function.

The EM algorithm first finds the expected value of the complete-data log-likelihoodlog p(X ;Yj�)
with respect to the unknown dataY given the observed dataX and the current parameter estimates.
That is, we define: Q(�;�(i�1)) = E hlog p(X ;Yj�)jX ;�(i�1)i (1)

Where�(i�1) are the current parameters estimates that we used to evaluate the expectation and�
are the new parameters that we optimize to increaseQ.

This expression probably requires some explanation.1 The key thing to understand is thatX and�(i�1) are constants,� is a normal variable that we wish to adjust, andY is a random
variable governed by the distributionf(yjX ;�(i�1)). The right side of Equation 1 can therefore be
re-written as:E hlog p(X ;Yj�)jX ;�(i�1)i = Zy2� log p(X ;yj�)f(yjX ;�(i�1))dy: (2)

Note thatf(yjX ;�(i�1)) is the marginal distribution of the unobserved data and is dependent on
both the observed dataX and on the current parameters, and� is the space of valuesy can take on.
In the best of cases, this marginal distribution is a simple analytical expression of the assumed pa-
rameters�(i�1) and perhaps the data. In the worst of cases, this density might be very hard to obtain.
Sometimes, in fact, the density actually used isf(y;Xj�(i�1)) = f(yjX ;�(i�1))f(Xj�(i�1)) but
this doesn’t effect subsequent steps since the extra factor,fX (Xj�(i�1)) is not dependent on�.

As an analogy, suppose we have a functionh(�; �) of two variables. Considerh(�;Y) where� is a constant andY is a random variable governed by some distributionfY(y). Thenq(�) =EY[h(�;Y)] = Ry h(�;y)fY(y)dy is now a deterministic function that could be maximized if
desired.

The evaluation of this expectation is called the E-step of thealgorithm. Notice the meaning of
the two arguments in the functionQ(�;�0). The first argument� corresponds to the parameters
that ultimately will be optimized in an attempt to maximize the likelihood. The second argument�0 corresponds to the parameters that we use to evaluate the expectation.

The second step (the M-step) of the EM algorithm is to maximize the expectation we computed
in the first step. That is, we find:�(i) = argmax� Q(�;�(i�1)):

These two steps are repeated as necessary. Each iteration is guaranteed to increase the log-
likelihood and the algorithm is guaranteed to converge to a local maximum of the likelihood func-
tion. There are many rate-of-convergence papers (e.g., [ALR77, RW84, Wu83, JX96, XJ96]) but
we will not discuss them here.1Recall thatE[h(Y)jX = x] = Ry h(y)fY jX(yjx)dy. In the following discussion, we drop the subscripts from

different density functions since argument usage should should disambiguate different ones.

2

A modified form of the M-step is to, instead of maximizingQ(�;�(i�1)), we find some�(i)
such thatQ(�(i);�(i�1)) > Q(�;�(i�1)). This form of the algorithm is called Generalized EM
(GEM) and is also guaranteed to converge.

As presented above, it’s not clear how exactly to “code up” thealgorithm. This is the way,
however, that the algorithm is presented in its most general form. The details of the steps required
to compute the given quantities are very dependent on the particular application so they are not
discussed when the algorithm is presented in this abstract form.

3 Finding Maximum Likelihood Mixture Densities Parameters via EM

The mixture-density parameter estimation problem is probably one of the most widely used appli-
cations of the EM algorithm in the computational pattern recognition community. In this case, we
assume the following probabilistic model:

p(xj�) = MXi=1 �ipi(xj�i)
where the parameters are� = (�1; : : : ; �M ; �1; : : : ; �M) such that

PMi=1 �i = 1 and eachpi is a
density function parameterized by�i. In other words, we assume we haveM component densities
mixed together withM mixing coefficients�i.

The incomplete-data log-likelihood expression for this density from the dataX is given by:

log(L(�jX)) = log NYi=1 p(xij�) = NXi=1 log
0@ MXj=1�jpj(xij�j)

1A
which is difficult to optimize because it contains the log of the sum. If we considerX as incomplete,
however, and posit the existence of unobserved data itemsY = fyigNi=1 whose values inform us
which component density “generated” each data item, the likelihood expression is significantly
simplified. That is, we assume thatyi 2 1; : : : ;M for eachi, andyi = k if the ith sample was
generated by thekth mixture component. If we know the values ofY, the likelihood becomes:

log(L(�jX ;Y)) = log(P (X ;Yj�)) = NXi=1 log (P (xijyi)P (y)) = NXi=1 log (�yipyi(xij�yi))
which, given a particular form of the component densities, canbe optimized using a variety of
techniques.

The problem, of course, is that we do not know the values ofY. If we assumeY is a random
vector, however, we can proceed.

We first must derive an expression for the distribution of the unobserved data. Let’s first guess
at parameters for the mixture density, i.e., we guess that�g = (�g1; : : : ; �gM ; �g1; : : : ; �gM) are the
appropriate parameters for the likelihoodL(�gjX ;Y). Given�g, we can easily computepj(xij�gj)
for eachi and j. In addition, the mixing parameters,�j can be though of as prior probabilities
of each mixture component, that is�j = p(component j). Therefore, using Bayes’s rule, we can
compute: p(yijxi;�g) = �gyipyi(xij�gyi)p(xij�g) = �gyipyi(xij�gyi)PMk=1 �gkpk(xij�gk)

3

and p(yjX ;�g) = NYi=1 p(yijxi;�g)
wherey = (y1; : : : ; yN) is an instance of the unobserved data independently drawn. When we
now look at Equation 2, we see that in this case we have obtained the desired marginal density by
assuming the existence of the hidden variables and making a guessat the initial parameters of their
distribution.

In this case, Equation 1 takes the form:Q(�;�g) = Xy2� log (L(�jX ;y)) p(yjX ;�g)
= Xy2� NXi=1 log (�yipyi(xij�yi)) NYj=1 p(yj jxj;�g)
= MXy1=1 MXy2=1 : : : MXyN=1 NXi=1 log (�yipyi(xij�yi)) NYj=1 p(yj jxj;�g)
= MXy1=1 MXy2=1 : : : MXyN=1 NXi=1 MX̀=1 �`;yi log (�`p`(xij�`)) NYj=1 p(yjjxj ;�g)
= MX̀=1 NXi=1 log (�`p`(xij�`)) MXy1=1 MXy2=1 : : : MXyN=1 �`;yi NYj=1 p(yjjxj ;�g) (3)

In this form,Q(�;�g) looks fairly daunting, yet it can be greatly simplified. We firstnote that
for ` 2 1; : : : ;M ,MXy1=1 MXy2=1 : : : MXyN=1 �`;yi NYj=1 p(yjjxj;�g)

= 0@ MXy1=1 : : : MXyi�1=1 MXyi+1=1 : : : MXyN=1 NYj=1;j 6=i p(yj jxj;�g)1A p(`jxi;�g)
= NYj=1;j 6=i

0@ MXyj=1 p(yjjxj;�g)1A p(`jxi;�g) = p(`jxi;�g) (4)

since
PMi=1 p(ijxj;�g) = 1. Using Equation 4, we can write Equation 3 as:

Q(�;�g) = MX̀=1 NXi=1 log (�`p`(xij�`)) p(`jxi;�g)
= MX̀=1 NXi=1 log(�`)p(`jxi;�g) + MX̀=1 NXi=1 log(p`(xij�`))p(`jxi;�g) (5)

To maximize this expression, we can maximize the term containing�` and the term containing�` independently since they are not related.

4

To find the expression for�`, we introduce the Lagrange multiplier� with the constraint thatP` �` = 1, and solve the following equation:@@�` " MX̀=1 NXi=1 log(�`)p(`jxi;�g) + � X̀�` � 1!# = 0
or NXi=1 1�` p(`jxi;�g) + � = 0
Summing both sizes over`, we get that� = �N resulting in:

�` = 1N NXi=1 p(`jxi;�g)
For some distributions, it is possible to get an analytical expressions for�` as functions of everything
else. For example, if we assumed-dimensional Gaussian component distributions with mean� and
covariance matrix�, i.e.,� = (�;�) then

p`(xj�`;�`) = 1(2�)d=2j�`j1=2 e� 12 (x��`)T��1` (x��`): (6)

To derive the update equations for this distribution, we needto recall some results from matrix
algebra.

The trace of a square matrix tr(A) is equal to the sum ofA’s diagonal elements. The trace of a
scalar equals that scalar. Also, tr(A + B) = tr(A) + tr(B), and tr(AB) = tr(BA) which implies
that

Pi xTi Axi = tr(AB) whereB = Pi xixTi . Also note thatjAj indicates the determinant of a
matrix, and thatjA�1j = 1=jAj.

We’ll need to take derivatives of a function of a matrixf(A) with respect to elements of that
matrix. Therefore, we define@f(A)@A to be the matrix withi; jth entry [@f(A)@ai;j] whereai;j is thei; jth entry of A. The definition also applies taking derivatives with respect to a vector. First,@xTAx@x = (A+ AT)x. Second, it can be shown that whenA is a symmetric matrix:@jAj@ai;j = (Ai;j if i = j2Ai;j if i 6= j
whereAi;j is thei; jth cofactor ofA. Given the above, we see that:@ log jAj@A = (Ai;j=jAj if i = j2Ai;j=jAj if i 6= j) = 2A�1 � diag(A�1)
by the definition of the inverse of a matrix. Finally, it can be shown that:@tr(AB)@A = B +BT � Diag(B):

5

Taking the log of Equation 6, ignoring any constant terms (since they disappear after taking
derivatives), and substituting into the right side of Equation 5, we get:MX̀=1 NXi=1 log (p`(xij�`;�`)) p(`jxi;�g)

= MX̀=1 NXi=1��12 log(j�`j)� 12(xi � �`)T��1` (xi � �`)� p(`jxi;�g) (7)

Taking the derivative of Equation 7 with respect to�` and setting it equal to zero, we get:NXi=1��1` (xi � �`)p(`jxi;�g) = 0
with which we can easily solve for�` to obtain:

�` = PNi=1 xip(`jxi;�g)PNi=1 p(`jxi;�g) :
To find�`, note that we can write Equation 7 as:MX̀=1 "12 log(j��1` j) NXi=1 p(`jxi;�g)� 12 NXi=1 p(`jxi;�g)tr���1` (xi � �`)(xi � �`)T�#

= MX̀=1 "12 log(j��1` j) NXi=1 p(`jxi;�g)� 12 NXi=1 p(`jxi;�g)tr���1` N`;i�#
whereN`;i = (xi � �`)(xi � �`)T .

Taking the derivative with respect to��1` , we get:12 NXi=1 p(`jxi;�g) (2�` � diag(�`))� 12 NXi=1 p(`jxi;�g) (2N`;i � diag(N`;i))
= 12 NXi=1 p(`jxi;�g) (2M`;i � diag(M`;i))= 2S � diag(S)

whereM`;i = �`�N`;i and whereS = 12PNi=1 p(`jxi;�g)M`;i. Setting the derivative to zero, i.e.,2S � diag(S) = 0, implies thatS = 0. This givesNXi=1 p(`jxi;�g) (�` �N`;i) = 0
or �` = PNi=1 p(`jxi;�g)N`;iPNi=1 p(`jxi;�g) = PNi=1 p(`jxi;�g)(xi � �`)(xi � �`)TPNi=1 p(`jxi;�g)

6

Summarizing, the estimates of the new parameters in terms of the old parameters are as follows:

�new` = 1N NXi=1 p(`jxi;�g)
�new` = PNi=1 xip(`jxi;�g)PNi=1 p(`jxi;�g)�new` = PNi=1 p(`jxi;�g)(xi � �new`)(xi � �new`)TPNi=1 p(`jxi;�g)

Note that the above equations perform both the expectation step and the maximization step
simultaneously. The algorithm proceeds by using the newly derived parameters as the guess for the
next iteration.

4 Learning the parameters of an HMM, EM, and the Baum-Welch
algorithm

A Hidden Markov Model is a probabilistic model of the joint probability of a collection of random
variablesfO1; : : : ; OT ; Q1; : : : ; QT g. TheOt variables are either continuous or discrete observa-
tions and theQt variables are “hidden” and discrete. Under an HMM, there are two conditional
independence assumptions made about these random variables that make associated algorithms
tractable. These independence assumptions are 1), thetth hidden variable, given the(t � 1)st
hidden variable, is independent of previous variables, or:P (QtjQt�1; Ot�1; : : : ; Q1; O1) = P (QtjQt�1);
and 2), thetth observation, given thetth hidden variable, is independent of other variables, or:P (OtjQT ; OT ; QT�1; OT�1; : : : ; Qt+1; Ot+1; Qt; Qt�1; Ot�1; : : : ; Q1; O1) = P (OtjQt):

In this section, we derive the EM algorithm for finding the maximum-likelihood estimate of the
parameters of a hidden Markov model given a set of observed feature vectors. This algorithm is also
known as the Baum-Welch algorithm.Qt is a discrete random variable withN possible valuesf1 : : :Ng. We further assume that
the underlying “hidden” Markov chain defined byP (QtjQt�1) is time-homogeneous (i.e., is inde-
pendent of the timet). Therefore, we can representP (QtjQt�1) as a time-independent stochastic
transition matrixA = fai;jg = p(Qt = jjQt�1 = i). The special case of timet = 1 is described
by the initial state distribution,�i = p(Q1 = i). We say that we are in statej at timet if Qt = j. A
particular sequence of states is described byq = (q1; : : : ; qT) whereqt 2 f1 : : :Ng is the state at
time t.

A particular observation sequenceO is described asO = (O1 = o1; : : : ; OT = oT). The
probability of a particular observation vector at a particular time t for statej is described by:bj(ot) = p(Ot = otjQt = j). The complete collection of parameters for all observation distri-
butions is represented byB = fbj(�)g.

There are two forms of output distributions we will consider. The first is a discrete observation
assumption where we assume that an observation is one ofL possible observation symbolsot 2

7

V = fv1; : : : ; vLg. In this case, ifot = vk, thenbj(ot) = p(Ot = vkjqt = j). The second form
of probably distribution we consider is a mixture ofM multivariate Gaussians for each state wherebj(ot) =PM̀=1 cj`N (otj�j`;�j`) =PM̀=1 cj`bj`(ot).

We describe the complete set of HMM parameters for a given modelby: � = (A;B; �). There
are three basic problems associated with HMMs:

1. Findp(Oj�) for someO = (o1; : : : ; oT). We use the forward (or the backward) procedure
for this since it is much more efficient than direct evaluation.

2. Given someO and some�, find the best state sequenceq = (q1; : : : ; qT) that explainsO.
The Viterbi algorithm solves this problem but we won’t discuss it in this paper.

3. Find�� = argmax� p(Oj�). The Baum-Welch (also called forward-backward or EM for

HMMs) algorithm solves this problem, and we will develop it presently.

In subsequent sections, we will consider only the first and third problems. The second is addressed
in [RJ93].

4.1 Efficient Calculation of Desired Quantities

One of the advantages of HMMs is that relatively efficient algorithms can be derived for the three
problems mentioned above. Before we derive the EM algorithmdirectly using theQ function, we
review these efficient procedures.
Recall the forward procedure. We define�i(t) = p(O1 = o1; : : : ; Ot = ot; Qt = ij�)
which is the probability of seeing the partial sequenceo1; : : : ; ot and ending up in statei at timet.
We can efficiently define�i(t) recursively as:

1. �i(1) = �ibi(o1)
2. �j(t+ 1) = hPNi=1 �i(t)aiji bj(ot+1)
3. p(Oj�) =PNi=1 �i(T)

The backward procedure is similar:�i(t) = p(Ot+1 = ot+1; : : : ; OT = oT jQt = i; �)
which is the probability of the ending partial sequenceot+1; : : : ; oT given that we started at statei
at timet. We can efficiently define�i(t) as:

1. �i(T) = 1
2. �i(t) =PNj=1 aijbj(ot+1)�j(t+ 1)
3. p(Oj�) =PNi=1 �i(1)�ibi(o1)

8

We now define
i(t) = p(Qt = ijO;�)
which is the probability of being in statei at timet for the state sequenceO. Note that:p(Qt = ijO;�) = p(O;Qt = ij�)P (Oj�) = p(O;Qt = ij�)PNj=1 p(O;Qt = jj�)
Also note that because of Markovian conditional independence�i(t)�i(t) = p(o1; : : : ; ot; Qt = ij�)p(ot+1; : : : ; oT jQt = i; �) = p(O;Qt = ij�)
so we can define things in terms of�i(t) and�i(t) as
i(t) = �i(t)�i(t)PNj=1 �j(t)�j(t)

We also define �ij(t) = p(Qt = i;Qt+1 = jjO;�)
which is the probability of being in statei at timet and being in statej at timet+ 1. This can also
be expanded as:�ij(t) = p(Qt = i;Qt+1 = j;Oj�)p(Oj�) = �i(t)aijbj(ot+1)�j(t+ 1)PNi=1PNj=1 �i(t)aijbj(ot+1)�j(t+ 1)
or as:�ij(t) = p(Qt = ijO)p(ot+1 : : : oT ; Qt+1 = jjQt = i; �)p(ot+1 : : : oT jQt = i; �) =
i(t)aijbj(ot+1)�j(t+ 1)�i(t)

If we sum these quantities across time, we can get some useful values. I.e., the expressionTXt=1
i(t)
is the expected number of times in statei and therefore is the expected number of transitions away
from statei for O. Similarly, T�1Xt=1 �ij(t)
is the expected number of transitions from statei to statej for O. These follow from the fact thatXt
i(t) =Xt E[It(i)] = E[Xt It(i)]
and Xt �ij(t) ==Xt E[It(i; j)] = E[Xt It(i; j)]
whereIt(i) is an indicator random variable that is1 when we are in statei at timet, andIt(i; j) is
a random variable that is1 when we move from statei to statej after timet.

9

Jumping the gun a bit, our goal in forming an EM algorithm to estimate new parameters for the
HMM by using the old parameters and the data. Intuitively, we can do this simply using relative
frequencies. I.e., we can define update rules as follows:

The quantity ~�i =
i(1) (8)

is the expected relative frequency spent in statei at time 1.
The quantity ~aij = PT�1t=1 �ij(t)PT�1t=1
i(t) (9)

is the expected number of transitions from statei to statej relative to the expected total number of
transitions away from statei.

And, for discrete distributions, the quantity~bi(k) = PTt=1 �ot;vk
i(t)PTt=1
i(t) (10)

is the expected number of times the output observations have been equal tovk while in statei
relative to the expected total number of times in statei.

For Gaussian mixtures, we define the probability that the`th component of theith mixture
generated observationot as

i`(t) =
i(t)ci`bi`(ot)bi(ot) = p(Qt = i;Xit = `jO;�)
whereXit is a random variable indicating the mixture component at time t for statei.

From the previous section on Gaussian Mixtures, we might guess that the update equations for
this case are: ci` = PTt=1
i`(t)PTt=1
i(t)�i` = PTt=1
i`(t)otPTt=1
i`(t)�i` = PTt=1
i`(t)(ot � �i`)(ot � �i`)TPTt=1
i`(t)

When there areE observation sequences theeth being of lengthTe, the update equations be-
come: �i = PEe=1
ei (1)Eci` = PEe=1PTet=1
ei`(t)PEe=1PTet=1
ei (t)�i` = PEe=1PTet=1
ei`(t)oetPEe=1PTet=1
ei`(t)

10

�i` = PEe=1PTet=1
ei`(t)(oet � �i`)(oet � �i`)TPEe=1PTet=1
ei`(t)
and aij = PEe=1PTet=1 �eij(t)PEe=1PTet=1
ei (t)

These relatively intuitive equations are in fact the EM algorithm (or Balm-Welch) for HMM
parameter estimation. We derive these using the more typical EMnotation in the next section.

4.2 Estimation formula using theQ function.

We considerO = (o1; : : : ; oT) to be the observed data and the underlying state sequenceq =(q1; : : : ; qT) to be hidden or unobserved. The incomplete-data likelihood function is given byP (Oj�) whereas the complete-data likelihood function isP (O; qj�). TheQ function therefore
is: Q(�; �0) = Xq2Q logP (O; qj�)P (O; qj�0)
where�0 are our initial (or guessed, previous, etc.)2 estimates of the parameters and whereQ is the
space of all state sequences of lengthT .

Given a particular state sequenceq, representingP (O; qj�0) is quite easy.3 I.e.,

P (O; qj�) = �q0 TYt=1 aqt�1qtbqt(ot)
TheQ function then becomes:

Q(�; �0) = Xq2Q log �q0P (O; qj�0)+Xq2Q TXt=1 log aqt�1qt! p(O; qj�0)+Xq2Q
0@ TXt+1 log bqt(ot)

1AP (O; qj�0)
(11)

Since the parameters we wish to optimize are now independently split into the three terms in the
sum, we can optimize each term individually.

The first term in Equation 11 becomesXq2Q log �q0P (O; qj�0) = NXi=1 log �ip(O; q0 = ij�0)
since by selecting allq 2 Q, we are simply repeatedly selecting the values ofq0, so the right hand
side is just the marginal expression for timet = 0. Adding the Lagrange multiplier
, using the
constraint that

Pi �i = 1, and setting the derivative equal to zero, we get:@@�i NXi=1 log �ip(O; q0 = ij�0) +
(NXi=1 �i � 1)! = 02For the remainder of the discussion anyprimed parameters are assumed to be the initial, guessed, or previous param-
eters whereas the unprimed parameters are being optimized.3Note here that we assume the initial distribution starts att = 0 instead oft = 1 for notational convenience. The
basic results are the same however.

11

Taking the derivative, summing overi to get
, and solving for�i, we get:�i = P (O; q0 = ij�0)P (Oj�0)
The second term in Equation 11 becomes:Xq2Q TXt=1 log aqt�1qt! p(O; qj�0) = NXi=1 NXj=1 TXt=1 log aijP (O; qt�1 = i; qt = jj�0)

because for this term, we are, for each timet looking over all transitions fromi to j and weighting
that by the corresponding probability – the right hand side is just sum of the joint-marginal for timet� 1 andt. In a similar way, we can use a Lagrange multiplier with the constraint

PNj=1 aij = 1 to
get: aij = PTt=1 P (O; qt�1 = i; qt = jj�0)PTt=1 P (O; qt�1 = ij�0)

The third term in Equation 11 becomes:Xq2Q TXt=1 log bqt(ot)!P (O; qj�0) = NXi=1 TXt=1 log bi(ot)p(O; qt = ij�0)
because for this term, we are, for each timet, looking at the emissions for all states and weighting
each possible emission by the corresponding probability – the right hand side is just the sum of the
marginal for timet.

For discrete distributions, we can, again, use use a Lagrange multiplier but this time with the
constraint

PLj=1 bi(j) = 1. Only the observations that are equal tovk contribute to thekth proba-
bility value, so we get: bi(k) = PTt=1 P (O; qt = ij�0)�ot;vkPTt=1 P (O; qt = ij�0)

For Gaussian Mixtures, the form of theQ function is slightly different, i.e., the hidden vari-
ables must include not only the hidden state sequence, but also a variable indicating the mixture
component for each state at each time. Therefore, we can writeQ as:Q(�; �0) = Xq2Q Xm2M logP (O; q;mj�)P (O; q;mj�0)
wherem is the vectorm = fmq11;mq22; : : : ;mqTT g that indicates the mixture component for each
state at each time. If we expand this as in Equation 11, the first and second terms are unchanged
because the parameters are independent ofm which is thus marginalized away by the sum. The
third term in Equation 11 becomes:Xq2Q Xm2M TXt=1 log bqt(ot;mqtt)!P (O; q;mj�0) = NXi=1 MX̀=1 TXt=1 log(ci`bi`(ot))p(O; qt = i;mqtt = `j�0)
This equation is almost identical to Equation 5, except for anaddition sum component over the
hidden state variables. We can optimize this in an exactly analogous way as we did in Section 3,
and we get: cil = PTt=1 P (qt = i;mqtt = `jO;�0)PTt=1PM̀=1 P (qt = i;mqtt = `jO;�0) ;

12

�il = PTt=1 otP (qt = i;mqtt = `jO;�0)PTt=1 P (qt = i;mqtt = `jO;�0) ;
and �il = PTt=1(ot � �i`)(ot � �i`)TP (qt = i;mqtt = `jO;�0)PTt=1 P (qt = i;mqtt = `jO;�0) :
As can be seen, these are the same set of update equations as given in the previous section.

The update equations for HMMs with multiple observation sequences can similarly be derived
and are addressed in [RJ93].

References

[ALR77] A.P.Dempster, N.M. Laird, and D.B. Rubin. Maximum-likelihood from incomplete data
via the em algorithm.J. Royal Statist. Soc. Ser. B., 39, 1977.

[Bis95] C. Bishop.Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

[GJ95] Z. Ghahramami and M. Jordan. Learning from incomplete data. Technical Report AI Lab
Memo No. 1509, CBCL Paper No. 108, MIT AI Lab, August 1995.

[JJ94] M. Jordan and R. Jacobs. Hierarchical mixtures of experts and the em algorithm.Neural
Computation, 6:181–214, 1994.

[JX96] M. Jordan and L. Xu. Convergence results for the em approach to mixtures of experts
architectures.Neural Networks, 8:1409–1431, 1996.

[RJ93] L. Rabiner and B.-H. Juang.Fundamentals of Speech Recognition. Prentice Hall Signal
Processing Series, 1993.

[RW84] R. Redner and H. Walker. Mixture densities, maximum likelihood and the em algorithm.
SIAM Review, 26(2), 1984.

[Wu83] C.F.J. Wu. On the convergence properties of the em algorithm. The Annals of Statistics,
11(1):95–103, 1983.

[XJ96] L. Xu and M.I. Jordan. On convergence properties of the em algorithm for gaussian
mixtures.Neural Computation, 8:129–151, 1996.

13

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Gaussian Processes for Machine Learning

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Adaptive Computation and Machine Learning
Thomas Dietterich, Editor
Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, Associate Editors

Bioinformatics: The Machine Learning Approach,
Pierre Baldi and Søren Brunak

Reinforcement Learning: An Introduction,
Richard S. Sutton and Andrew G. Barto

Graphical Models for Machine Learning and Digital Communication,
Brendan J. Frey

Learning in Graphical Models,
Michael I. Jordan

Causation, Prediction, and Search, second edition,
Peter Spirtes, Clark Glymour, and Richard Scheines

Principles of Data Mining,
David Hand, Heikki Mannila, and Padhraic Smyth

Bioinformatics: The Machine Learning Approach, second edition,
Pierre Baldi and Søren Brunak

Learning Kernel Classifiers: Theory and Algorithms,
Ralf Herbrich

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond,
Bernhard Schölkopf and Alexander J. Smola

Introduction to Machine Learning,
Ethem Alpaydin

Gaussian Processes for Machine Learning,
Carl Edward Rasmussen and Christopher K. I. Williams

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Gaussian Processes for Machine Learning

Carl Edward Rasmussen
Christopher K. I. Williams

The MIT Press
Cambridge, Massachusetts
London, England

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

c© 2006 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical
means (including photocopying, recording, or information storage and retrieval) without permission in
writing from the publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use.
For information, please email special sales@mitpress.mit.edu or write to Special Sales Department,
The MIT Press, 55 Hayward Street, Cambridge, MA 02142.

Typeset by the authors using LATEX2ε.
This book was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Rasmussen, Carl Edward.
Gaussian processes for machine learning / Carl Edward Rasmussen, Christopher K. I. Williams.

p. cm. —(Adaptive computation and machine learning)
Includes bibliographical references and indexes.
ISBN 0-262-18253-X
1. Gaussian processes—Data processing. 2. Machine learning—Mathematical models.
I. Williams, Christopher K. I. II. Title. III. Series.

QA274.4.R37 2006
519.2'3—dc22

2005053433

10 9 8 7 6 5 4 3 2

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

The actual science of logic is conversant at present only with things either
certain, impossible, or entirely doubtful, none of which (fortunately) we have to
reason on. Therefore the true logic for this world is the calculus of Probabilities,
which takes account of the magnitude of the probability which is, or ought to
be, in a reasonable man’s mind.

— James Clerk Maxwell [1850]

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Contents

Series Foreword . xi
Preface . xiii
Symbols and Notation . xvii

1 Introduction 1
1.1 A Pictorial Introduction to Bayesian Modelling 3
1.2 Roadmap . 5

2 Regression 7
2.1 Weight-space View . 7

2.1.1 The Standard Linear Model . 8
2.1.2 Projections of Inputs into Feature Space 11

2.2 Function-space View . 13
2.3 Varying the Hyperparameters . 19
2.4 Decision Theory for Regression . 21
2.5 An Example Application . 22
2.6 Smoothing, Weight Functions and Equivalent Kernels 24

∗ 2.7 Incorporating Explicit Basis Functions . 27
2.7.1 Marginal Likelihood . 29

2.8 History and Related Work . 29
2.9 Exercises . 30

3 Classification 33
3.1 Classification Problems . 34

3.1.1 Decision Theory for Classification 35
3.2 Linear Models for Classification . 37
3.3 Gaussian Process Classification . 39
3.4 The Laplace Approximation for the Binary GP Classifier 41

3.4.1 Posterior . 42
3.4.2 Predictions . 44
3.4.3 Implementation . 45
3.4.4 Marginal Likelihood . 47

∗ 3.5 Multi-class Laplace Approximation . 48
3.5.1 Implementation . 51

3.6 Expectation Propagation . 52
3.6.1 Predictions . 56
3.6.2 Marginal Likelihood . 57
3.6.3 Implementation . 57

3.7 Experiments . 60
3.7.1 A Toy Problem . 60
3.7.2 One-dimensional Example . 62
3.7.3 Binary Handwritten Digit Classification Example 63
3.7.4 10-class Handwritten Digit Classification Example 70

3.8 Discussion . 72
∗Sections marked by an asterisk contain advanced material that may be omitted on a first reading.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

viii Contents

∗ 3.9 Appendix: Moment Derivations . 74
3.10 Exercises . 75

4 Covariance Functions 79
4.1 Preliminaries . 79

∗ 4.1.1 Mean Square Continuity and Differentiability 81
4.2 Examples of Covariance Functions . 81

4.2.1 Stationary Covariance Functions 82
4.2.2 Dot Product Covariance Functions 89
4.2.3 Other Non-stationary Covariance Functions 90
4.2.4 Making New Kernels from Old . 94

4.3 Eigenfunction Analysis of Kernels . 96
∗ 4.3.1 An Analytic Example . 97

4.3.2 Numerical Approximation of Eigenfunctions 98
4.4 Kernels for Non-vectorial Inputs . 99

4.4.1 String Kernels . 100
4.4.2 Fisher Kernels . 101

4.5 Exercises . 102

5 Model Selection and Adaptation of Hyperparameters 105
5.1 The Model Selection Problem . 106
5.2 Bayesian Model Selection . 108
5.3 Cross-validation . 111
5.4 Model Selection for GP Regression . 112

5.4.1 Marginal Likelihood . 112
5.4.2 Cross-validation . 116
5.4.3 Examples and Discussion . 118

5.5 Model Selection for GP Classification . 124
∗ 5.5.1 Derivatives of the Marginal Likelihood for Laplace’s Approximation 125
∗ 5.5.2 Derivatives of the Marginal Likelihood for EP 127

5.5.3 Cross-validation . 127
5.5.4 Example . 128

5.6 Exercises . 128

6 Relationships between GPs and Other Models 129
6.1 Reproducing Kernel Hilbert Spaces . 129
6.2 Regularization . 132

∗ 6.2.1 Regularization Defined by Differential Operators 133
6.2.2 Obtaining the Regularized Solution 135
6.2.3 The Relationship of the Regularization View to Gaussian Process

Prediction . 135
6.3 Spline Models . 136

∗ 6.3.1 A 1-d Gaussian Process Spline Construction 138
∗ 6.4 Support Vector Machines . 141

6.4.1 Support Vector Classification . 141
6.4.2 Support Vector Regression . 145

∗ 6.5 Least-squares Classification . 146
6.5.1 Probabilistic Least-squares Classification 147

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Contents ix

∗ 6.6 Relevance Vector Machines . 149
6.7 Exercises . 150

7 Theoretical Perspectives 151
7.1 The Equivalent Kernel . 151

7.1.1 Some Specific Examples of Equivalent Kernels 153
∗ 7.2 Asymptotic Analysis . 155

7.2.1 Consistency . 155
7.2.2 Equivalence and Orthogonality . 157

∗ 7.3 Average-case Learning Curves . 159
∗ 7.4 PAC-Bayesian Analysis . 161

7.4.1 The PAC Framework . 162
7.4.2 PAC-Bayesian Analysis . 163
7.4.3 PAC-Bayesian Analysis of GP Classification 164

7.5 Comparison with Other Supervised Learning Methods 165
∗ 7.6 Appendix: Learning Curve for the Ornstein-Uhlenbeck Process 168

7.7 Exercises . 169

8 Approximation Methods for Large Datasets 171
8.1 Reduced-rank Approximations of the Gram Matrix 171
8.2 Greedy Approximation . 174
8.3 Approximations for GPR with Fixed Hyperparameters 175

8.3.1 Subset of Regressors . 175
8.3.2 The Nyström Method . 177
8.3.3 Subset of Datapoints . 177
8.3.4 Projected Process Approximation 178
8.3.5 Bayesian Committee Machine . 180
8.3.6 Iterative Solution of Linear Systems 181
8.3.7 Comparison of Approximate GPR Methods 182

8.4 Approximations for GPC with Fixed Hyperparameters 185
∗ 8.5 Approximating the Marginal Likelihood and its Derivatives 185
∗ 8.6 Appendix: Equivalence of SR and GPR Using the Nyström Approximate

Kernel . 187
8.7 Exercises . 187

9 Further Issues and Conclusions 189
9.1 Multiple Outputs . 190
9.2 Noise Models with Dependencies . 190
9.3 Non-Gaussian Likelihoods . 191
9.4 Derivative Observations . 191
9.5 Prediction with Uncertain Inputs . 192
9.6 Mixtures of Gaussian Processes . 192
9.7 Global Optimization . 193
9.8 Evaluation of Integrals . 193
9.9 Student’s t Process . 194
9.10 Invariances . 194
9.11 Latent Variable Models . 196
9.12 Conclusions and Future Directions . 196

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

x Contents

Appendix A Mathematical Background 199
A.1 Joint, Marginal and Conditional Probability 199
A.2 Gaussian Identities . 200
A.3 Matrix Identities . 201

A.3.1 Matrix Derivatives . 202
A.3.2 Matrix Norms . 202

A.4 Cholesky Decomposition . 202
A.5 Entropy and Kullback-Leibler Divergence 203
A.6 Limits . 204
A.7 Measure and Integration . 204

A.7.1 Lp Spaces . 205
A.8 Fourier Transforms . 205
A.9 Convexity . 206

Appendix B Gaussian Markov Processes 207
B.1 Fourier Analysis . 208

B.1.1 Sampling and Periodization . 209
B.2 Continuous-time Gaussian Markov Processes 211

B.2.1 Continuous-time GMPs on R . 211
B.2.2 The Solution of the Corresponding SDE on the Circle 213

B.3 Discrete-time Gaussian Markov Processes 214
B.3.1 Discrete-time GMPs on Z . 214
B.3.2 The Solution of the Corresponding Difference Equation on PN . . 215

B.4 The Relationship Between Discrete-time and Sampled Continuous-time
GMPs . 217

B.5 Markov Processes in Higher Dimensions 218

Appendix C Datasets and Code 221

Bibliography 223

Author Index 239

Subject Index 245

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Series Foreword

The goal of building systems that can adapt to their environments and learn
from their experience has attracted researchers from many fields, including com-
puter science, engineering, mathematics, physics, neuroscience, and cognitive
science. Out of this research has come a wide variety of learning techniques that
have the potential to transform many scientific and industrial fields. Recently,
several research communities have converged on a common set of issues sur-
rounding supervised, unsupervised, and reinforcement learning problems. The
MIT Press series on Adaptive Computation and Machine Learning seeks to
unify the many diverse strands of machine learning research and to foster high
quality research and innovative applications.

One of the most active directions in machine learning has been the de-
velopment of practical Bayesian methods for challenging learning problems.
Gaussian Processes for Machine Learning presents one of the most important
Bayesian machine learning approaches based on a particularly effective method
for placing a prior distribution over the space of functions. Carl Edward Ras-
mussen and Chris Williams are two of the pioneers in this area, and their book
describes the mathematical foundations and practical application of Gaussian
processes in regression and classification tasks. They also show how Gaussian
processes can be interpreted as a Bayesian version of the well-known support
vector machine methods. Students and researchers who study this book will be
able to apply Gaussian process methods in creative ways to solve a wide range
of problems in science and engineering.

Thomas Dietterich

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Preface

Over the last decade there has been an explosion of work in the “kernel ma- kernel machines

chines” area of machine learning. Probably the best known example of this is
work on support vector machines, but during this period there has also been
much activity concerning the application of Gaussian process models to ma-
chine learning tasks. The goal of this book is to provide a systematic and uni-
fied treatment of this area. Gaussian processes provide a principled, practical,
probabilistic approach to learning in kernel machines. This gives advantages
with respect to the interpretation of model predictions and provides a well-
founded framework for learning and model selection. Theoretical and practical
developments of over the last decade have made Gaussian processes a serious
competitor for real supervised learning applications.

Roughly speaking a stochastic process is a generalization of a probability Gaussian process

distribution (which describes a finite-dimensional random variable) to func-
tions. By focussing on processes which are Gaussian, it turns out that the
computations required for inference and learning become relatively easy. Thus,
the supervised learning problems in machine learning which can be thought of
as learning a function from examples can be cast directly into the Gaussian
process framework.

Our interest in Gaussian process (GP) models in the context of machine Gaussian processes
in machine learninglearning was aroused in 1994, while we were both graduate students in Geoff

Hinton’s Neural Networks lab at the University of Toronto. This was a time
when the field of neural networks was becoming mature and the many con-
nections to statistical physics, probabilistic models and statistics became well
known, and the first kernel-based learning algorithms were becoming popular.
In retrospect it is clear that the time was ripe for the application of Gaussian
processes to machine learning problems.

Many researchers were realizing that neural networks were not so easy to neural networks

apply in practice, due to the many decisions which needed to be made: what
architecture, what activation functions, what learning rate, etc., and the lack of
a principled framework to answer these questions. The probabilistic framework
was pursued using approximations by MacKay [1992b] and using Markov chain
Monte Carlo (MCMC) methods by Neal [1996]. Neal was also a graduate stu-
dent in the same lab, and in his thesis he sought to demonstrate that using the
Bayesian formalism, one does not necessarily have problems with “overfitting”
when the models get large, and one should pursue the limit of large models.
While his own work was focused on sophisticated Markov chain methods for
inference in large finite networks, he did point out that some of his networks
became Gaussian processes in the limit of infinite size, and “there may be sim- large neural networks

≡ Gaussian processespler ways to do inference in this case.”

It is perhaps interesting to mention a slightly wider historical perspective.
The main reason why neural networks became popular was that they allowed
the use of adaptive basis functions, as opposed to the well known linear models. adaptive basis functions

The adaptive basis functions, or hidden units, could “learn” hidden features

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

xiv Preface

useful for the modelling problem at hand. However, this adaptivity came at the
cost of a lot of practical problems. Later, with the advancement of the “kernel
era”, it was realized that the limitation of fixed basis functions is not a bigmany fixed basis

functions restriction if only one has enough of them, i.e. typically infinitely many, and
one is careful to control problems of overfitting by using priors or regularization.
The resulting models are much easier to handle than the adaptive basis function
models, but have similar expressive power.

Thus, one could claim that (as far a machine learning is concerned) the
adaptive basis functions were merely a decade-long digression, and we are now
back to where we came from. This view is perhaps reasonable if we think of
models for solving practical learning problems, although MacKay [2003, ch. 45],
for example, raises concerns by asking “did we throw out the baby with the bath
water?”, as the kernel view does not give us any hidden representations, tellinguseful representations

us what the useful features are for solving a particular problem. As we will
argue in the book, one answer may be to learn more sophisticated covariance
functions, and the “hidden” properties of the problem are to be found here.
An important area of future developments for GP models is the use of more
expressive covariance functions.

Supervised learning problems have been studied for more than a centurysupervised learning
in statistics in statistics, and a large body of well-established theory has been developed.

More recently, with the advance of affordable, fast computation, the machine
learning community has addressed increasingly large and complex problems.

Much of the basic theory and many algorithms are shared between thestatistics and
machine learning statistics and machine learning community. The primary differences are perhaps

the types of the problems attacked, and the goal of learning. At the risk of
oversimplification, one could say that in statistics a prime focus is often indata and models

understanding the data and relationships in terms of models giving approximate
summaries such as linear relations or independencies. In contrast, the goals in
machine learning are primarily to make predictions as accurately as possible andalgorithms and

predictions to understand the behaviour of learning algorithms. These differing objectives
have led to different developments in the two fields: for example, neural network
algorithms have been used extensively as black-box function approximators in
machine learning, but to many statisticians they are less than satisfactory,
because of the difficulties in interpreting such models.

Gaussian process models in some sense bring together work in the two com-bridging the gap

munities. As we will see, Gaussian processes are mathematically equivalent to
many well known models, including Bayesian linear models, spline models, large
neural networks (under suitable conditions), and are closely related to others,
such as support vector machines. Under the Gaussian process viewpoint, the
models may be easier to handle and interpret than their conventional coun-
terparts, such as e.g. neural networks. In the statistics community Gaussian
processes have also been discussed many times, although it would probably be
excessive to claim that their use is widespread except for certain specific appli-
cations such as spatial models in meteorology and geology, and the analysis of
computer experiments. A rich theory also exists for Gaussian process models

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Preface xv

in the time series analysis literature; some pointers to this literature are given
in Appendix B.

The book is primarily intended for graduate students and researchers in intended audience

machine learning at departments of Computer Science, Statistics and Applied
Mathematics. As prerequisites we require a good basic grounding in calculus,
linear algebra and probability theory as would be obtained by graduates in nu-
merate disciplines such as electrical engineering, physics and computer science.
For preparation in calculus and linear algebra any good university-level text-
book on mathematics for physics or engineering such as Arfken [1985] would
be fine. For probability theory some familiarity with multivariate distributions
(especially the Gaussian) and conditional probability is required. Some back-
ground mathematical material is also provided in Appendix A.

The main focus of the book is to present clearly and concisely an overview focus

of the main ideas of Gaussian processes in a machine learning context. We have
also covered a wide range of connections to existing models in the literature,
and cover approximate inference for faster practical algorithms. We have pre-
sented detailed algorithms for many methods to aid the practitioner. Software
implementations are available from the website for the book, see Appendix C.
We have also included a small set of exercises in each chapter; we hope these
will help in gaining a deeper understanding of the material.

In order limit the size of the volume, we have had to omit some topics, such scope

as, for example, Markov chain Monte Carlo methods for inference. One of the
most difficult things to decide when writing a book is what sections not to write.
Within sections, we have often chosen to describe one algorithm in particular
in depth, and mention related work only in passing. Although this causes the
omission of some material, we feel it is the best approach for a monograph, and
hope that the reader will gain a general understanding so as to be able to push
further into the growing literature of GP models.

The book has a natural split into two parts, with the chapters up to and book organization

including chapter 5 covering core material, and the remaining sections covering
the connections to other methods, fast approximations, and more specialized
properties. Some sections are marked by an asterisk. These sections may be ∗
omitted on a first reading, and are not pre-requisites for later (un-starred)
material.

We wish to express our considerable gratitude to the many people with acknowledgements

whom we have interacted during the writing of this book. In particular Moray
Allan, David Barber, Peter Bartlett, Miguel Carreira-Perpiñán, Marcus Gal-
lagher, Manfred Opper, Anton Schwaighofer, Matthias Seeger, Hanna Wallach,
Joe Whittaker, and Andrew Zisserman all read parts of the book and provided
valuable feedback. Dilan Görür, Malte Kuss, Iain Murray, Joaquin Quiñonero-
Candela, Leif Rasmussen and Sam Roweis were especially heroic and provided
comments on the whole manuscript. We thank Chris Bishop, Miguel Carreira-
Perpiñán, Nando de Freitas, Zoubin Ghahramani, Peter Grünwald, Mike Jor-
dan, John Kent, Radford Neal, Joaquin Quiñonero-Candela, Ryan Rifkin, Ste-
fan Schaal, Anton Schwaighofer, Matthias Seeger, Peter Sollich, Ingo Steinwart,

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

xvi Preface

Amos Storkey, Volker Tresp, Sethu Vijayakumar, Grace Wahba, Joe Whittaker
and Tong Zhang for valuable discussions on specific issues. We also thank Bob
Prior and the staff at MIT Press for their support during the writing of the
book. We thank the Gatsby Computational Neuroscience Unit (UCL) and Neil
Lawrence at the Department of Computer Science, University of Sheffield for
hosting our visits and kindly providing space for us to work, and the Depart-
ment of Computer Science at the University of Toronto for computer support.
Thanks to John and Fiona for their hospitality on numerous occasions. Some
of the diagrams in this book have been inspired by similar diagrams appearing
in published work, as follows: Figure 3.5, Schölkopf and Smola [2002]; Fig-
ure 5.2, MacKay [1992b]. CER gratefully acknowledges financial support from
the German Research Foundation (DFG). CKIW thanks the School of Infor-
matics, University of Edinburgh for granting him sabbatical leave for the period
October 2003-March 2004.

Finally, we reserve our deepest appreciation for our wives Agnes and Bar-
bara, and children Ezra, Kate, Miro and Ruth for their patience and under-
standing while the book was being written.

Despite our best efforts it is inevitable that some errors will make it througherrata

to the printed version of the book. Errata will be made available via the book’s
website at

http://www.GaussianProcess.org/gpml

We have found the joint writing of this book an excellent experience. Although
hard at times, we are confident that the end result is much better than either
one of us could have written alone.

Now, ten years after their first introduction into the machine learning com-looking ahead

munity, Gaussian processes are receiving growing attention. Although GPs
have been known for a long time in the statistics and geostatistics fields, and
their use can perhaps be traced back as far as the end of the 19th century, their
application to real problems is still in its early phases. This contrasts somewhat
the application of the non-probabilistic analogue of the GP, the support vec-
tor machine, which was taken up more quickly by practitioners. Perhaps this
has to do with the probabilistic mind-set needed to understand GPs, which is
not so generally appreciated. Perhaps it is due to the need for computational
short-cuts to implement inference for large datasets. Or it could be due to the
lack of a self-contained introduction to this exciting field—with this volume, we
hope to contribute to the momentum gained by Gaussian processes in machine
learning.

Carl Edward Rasmussen and Chris Williams
Tübingen and Edinburgh, summer 2005

Second printing: We thank Baback Moghaddam, Mikhail Parakhin, Leif Ras-
mussen, Benjamin Sobotta, Kevin S. Van Horn and Aki Vehtari for reporting
errors in the first printing which have now been corrected.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Symbols and Notation

Matrices are capitalized and vectors are in bold type. We do not generally distinguish between proba-
bilities and probability densities. A subscript asterisk, such as in X∗, indicates reference to a test set
quantity. A superscript asterisk denotes complex conjugate.

Symbol Meaning

\ left matrix divide: A\b is the vector x which solves Ax = b
, an equality which acts as a definition
c= equality up to an additive constant
|K| determinant of K matrix
|y| Euclidean length of vector y, i.e.

(∑
i y

2
i

)1/2

〈f, g〉H RKHS inner product
‖f‖H RKHS norm
y> the transpose of vector y
∝ proportional to; e.g. p(x|y) ∝ f(x, y) means that p(x|y) is equal to f(x, y) times

a factor which is independent of x
∼ distributed according to; example: x ∼ N (µ, σ2)
∇ or ∇f partial derivatives (w.r.t. f)
∇∇ the (Hessian) matrix of second derivatives
0 or 0n vector of all 0’s (of length n)
1 or 1n vector of all 1’s (of length n)
C number of classes in a classification problem
cholesky(A) Cholesky decomposition: L is a lower triangular matrix such that LL> = A
cov(f∗) Gaussian process posterior covariance
D dimension of input space X
D data set: D = {(xi, yi)|i = 1, . . . , n}
diag(w) (vector argument) a diagonal matrix containing the elements of vector w
diag(W) (matrix argument) a vector containing the diagonal elements of matrix W
δpq Kronecker delta, δpq = 1 iff p = q and 0 otherwise
E or Eq(x)[z(x)] expectation; expectation of z(x) when x ∼ q(x)
f(x) or f Gaussian process (or vector of) latent function values, f = (f(x1), . . . , f(xn))>

f∗ Gaussian process (posterior) prediction (random variable)
f̄∗ Gaussian process posterior mean
GP Gaussian process: f ∼ GP

(
m(x), k(x,x′)

)
, the function f is distributed as a

Gaussian process with mean function m(x) and covariance function k(x,x′)
h(x) or h(x) either fixed basis function (or set of basis functions) or weight function
H or H(X) set of basis functions evaluated at all training points
I or In the identity matrix (of size n)
Jν(z) Bessel function of the first kind
k(x,x′) covariance (or kernel) function evaluated at x and x′

K or K(X,X) n× n covariance (or Gram) matrix
K∗ n× n∗ matrix K(X,X∗), the covariance between training and test cases
k(x∗) or k∗ vector, short for K(X,x∗), when there is only a single test case
Kf or K covariance matrix for the (noise free) f values

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

xviii Symbols and Notation

Symbol Meaning

Ky covariance matrix for the (noisy) y values; for independent homoscedastic noise,
Ky = Kf + σ2

nI
Kν(z) modified Bessel function
L(a, b) loss function, the loss of predicting b, when a is true; note argument order
log(z) natural logarithm (base e)
log2(z) logarithm to the base 2
` or `d characteristic length-scale (for input dimension d)
λ(z) logistic function, λ(z) = 1/

(
1 + exp(−z)

)
m(x) the mean function of a Gaussian process
µ a measure (see section A.7)
N (µ,Σ) or N (x|µ,Σ) (the variable x has a) Gaussian (Normal) distribution with mean vector µ and

covariance matrix Σ
N (x) short for unit Gaussian x ∼ N (0, I)
n and n∗ number of training (and test) cases
N dimension of feature space
NH number of hidden units in a neural network
N the natural numbers, the positive integers
O(·) big Oh; for functions f and g on N, we write f(n) = O(g(n)) if the ratio

f(n)/g(n) remains bounded as n→∞
O either matrix of all zeros or differential operator
y|x and p(y|x) conditional random variable y given x and its probability (density)
PN the regular n-polygon
φ(xi) or Φ(X) feature map of input xi (or input set X)
Φ(z) cumulative unit Gaussian: Φ(z) = (2π)−1/2

∫ z

−∞ exp(−t2/2)dt
π(x) the sigmoid of the latent value: π(x) = σ(f(x)) (stochastic if f(x) is stochastic)
π̂(x∗) MAP prediction: π evaluated at f̄(x∗).
π̄(x∗) mean prediction: expected value of π(x∗). Note, in general that π̂(x∗) 6= π̄(x∗)
R the real numbers
RL(f) or RL(c) the risk or expected loss for f , or classifier c (averaged w.r.t. inputs and outputs)
R̃L(l|x∗) expected loss for predicting l, averaged w.r.t. the model’s pred. distr. at x∗
Rc decision region for class c
S(s) power spectrum
σ(z) any sigmoid function, e.g. logistic λ(z), cumulative Gaussian Φ(z), etc.
σ2

f variance of the (noise free) signal
σ2

n noise variance
θ vector of hyperparameters (parameters of the covariance function)
tr(A) trace of (square) matrix A
Tl the circle with circumference l
V or Vq(x)[z(x)] variance; variance of z(x) when x ∼ q(x)
X input space and also the index set for the stochastic process
X D × n matrix of the training inputs {xi}ni=1: the design matrix
X∗ matrix of test inputs
xi the ith training input
xdi the dth coordinate of the ith training input xi

Z the integers . . . ,−2, −1, 0, 1, 2, . . .

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Chapter 1

Introduction

In this book we will be concerned with supervised learning, which is the problem
of learning input-output mappings from empirical data (the training dataset).
Depending on the characteristics of the output, this problem is known as either
regression, for continuous outputs, or classification, when outputs are discrete.

A well known example is the classification of images of handwritten digits. digit classification

The training set consists of small digitized images, together with a classification
from 0, . . . , 9, normally provided by a human. The goal is to learn a mapping
from image to classification label, which can then be used on new, unseen
images. Supervised learning is an attractive way to attempt to tackle this
problem, since it is not easy to specify accurately the characteristics of, say, the
handwritten digit 4.

An example of a regression problem can be found in robotics, where we wish robotic control

to learn the inverse dynamics of a robot arm. Here the task is to map from
the state of the arm (given by the positions, velocities and accelerations of the
joints) to the corresponding torques on the joints. Such a model can then be
used to compute the torques needed to move the arm along a given trajectory.
Another example would be in a chemical plant, where we might wish to predict
the yield as a function of process parameters such as temperature, pressure,
amount of catalyst etc.

In general we denote the input as x, and the output (or target) as y. The the dataset

input is usually represented as a vector x as there are in general many input
variables—in the handwritten digit recognition example one may have a 256-
dimensional input obtained from a raster scan of a 16 × 16 image, and in the
robot arm example there are three input measurements for each joint in the
arm. The target y may either be continuous (as in the regression case) or
discrete (as in the classification case). We have a dataset D of n observations,
D = {(xi, yi)|i = 1, . . . , n}.

Given this training data we wish to make predictions for new inputs x∗ training is inductive

that we have not seen in the training set. Thus it is clear that the problem
at hand is inductive; we need to move from the finite training data D to a

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2 Introduction

function f that makes predictions for all possible input values. To do this we
must make assumptions about the characteristics of the underlying function,
as otherwise any function which is consistent with the training data would be
equally valid. A wide variety of methods have been proposed to deal with the
supervised learning problem; here we describe two common approaches. Thetwo approaches

first is to restrict the class of functions that we consider, for example by only
considering linear functions of the input. The second approach is (speaking
rather loosely) to give a prior probability to every possible function, where
higher probabilities are given to functions that we consider to be more likely, for
example because they are smoother than other functions.1 The first approach
has an obvious problem in that we have to decide upon the richness of the class
of functions considered; if we are using a model based on a certain class of
functions (e.g. linear functions) and the target function is not well modelled by
this class, then the predictions will be poor. One may be tempted to increase the
flexibility of the class of functions, but this runs into the danger of overfitting,
where we can obtain a good fit to the training data, but perform badly when
making test predictions.

The second approach appears to have a serious problem, in that surely
there are an uncountably infinite set of possible functions, and how are we
going to compute with this set in finite time? This is where the GaussianGaussian process

process comes to our rescue. A Gaussian process is a generalization of the
Gaussian probability distribution. Whereas a probability distribution describes
random variables which are scalars or vectors (for multivariate distributions),
a stochastic process governs the properties of functions. Leaving mathematical
sophistication aside, one can loosely think of a function as a very long vector,
each entry in the vector specifying the function value f(x) at a particular input
x. It turns out, that although this idea is a little näıve, it is surprisingly close
what we need. Indeed, the question of how we deal computationally with these
infinite dimensional objects has the most pleasant resolution imaginable: if you
ask only for the properties of the function at a finite number of points, then
inference in the Gaussian process will give you the same answer if you ignore the
infinitely many other points, as if you would have taken them all into account!
And these answers are consistent with answers to any other finite queries youconsistency

may have. One of the main attractions of the Gaussian process framework is
precisely that it unites a sophisticated and consistent view with computationaltractability

tractability.

It should come as no surprise that these ideas have been around for some
time, although they are perhaps not as well known as they might be. Indeed,
many models that are commonly employed in both machine learning and statis-
tics are in fact special cases of, or restricted kinds of Gaussian processes. In this
volume, we aim to give a systematic and unified treatment of the area, showing
connections to related models.

1These two approaches may be regarded as imposing a restriction bias and a preference
bias respectively; see e.g. Mitchell [1997].

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

1.1 A Pictorial Introduction to Bayesian Modelling 3

0 0.5 1

−2

−1

0

1

2

input, x

f(x
)

0 0.5 1

−2

−1

0

1

2

input, x
f(x

)

(a), prior (b), posterior

Figure 1.1: Panel (a) shows four samples drawn from the prior distribution. Panel
(b) shows the situation after two datapoints have been observed. The mean prediction
is shown as the solid line and four samples from the posterior are shown as dashed
lines. In both plots the shaded region denotes twice the standard deviation at each
input value x.

1.1 A Pictorial Introduction to Bayesian Mod-
elling

In this section we give graphical illustrations of how the second (Bayesian)
method works on some simple regression and classification examples.

We first consider a simple 1-d regression problem, mapping from an input regression

x to an output f(x). In Figure 1.1(a) we show a number of sample functions
drawn at random from the prior distribution over functions specified by a par- random functions

ticular Gaussian process which favours smooth functions. This prior is taken
to represent our prior beliefs over the kinds of functions we expect to observe,
before seeing any data. In the absence of knowledge to the contrary we have
assumed that the average value over the sample functions at each x is zero. mean function

Although the specific random functions drawn in Figure 1.1(a) do not have a
mean of zero, the mean of f(x) values for any fixed x would become zero, in-
dependent of x as we kept on drawing more functions. At any value of x we
can also characterize the variability of the sample functions by computing the pointwise variance

variance at that point. The shaded region denotes twice the pointwise standard
deviation; in this case we used a Gaussian process which specifies that the prior
variance does not depend on x.

Suppose that we are then given a dataset D = {(x1, y1), (x2, y2)} consist- functions that agree
with observationsing of two observations, and we wish now to only consider functions that pass

though these two data points exactly. (It is also possible to give higher pref-
erence to functions that merely pass “close” to the datapoints.) This situation
is illustrated in Figure 1.1(b). The dashed lines show sample functions which
are consistent with D, and the solid line depicts the mean value of such func-
tions. Notice how the uncertainty is reduced close to the observations. The
combination of the prior and the data leads to the posterior distribution over posterior over functions

functions.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4 Introduction

If more datapoints were added one would see the mean function adjust itself
to pass through these points, and that the posterior uncertainty would reduce
close to the observations. Notice, that since the Gaussian process is not a
parametric model, we do not have to worry about whether it is possible for thenon-parametric

model to fit the data (as would be the case if e.g. you tried a linear model on
strongly non-linear data). Even when a lot of observations have been added,
there may still be some flexibility left in the functions. One way to imagine the
reduction of flexibility in the distribution of functions as the data arrives is to
draw many random functions from the prior, and reject the ones which do not
agree with the observations. While this is a perfectly valid way to do inference,inference

it is impractical for most purposes—the exact analytical computations required
to quantify these properties will be detailed in the next chapter.

The specification of the prior is important, because it fixes the properties ofprior specification

the functions considered for inference. Above we briefly touched on the mean
and pointwise variance of the functions. However, other characteristics can also
be specified and manipulated. Note that the functions in Figure 1.1(a) are
smooth and stationary (informally, stationarity means that the functions look
similar at all x locations). These are properties which are induced by the co-
variance function of the Gaussian process; many other covariance functions arecovariance function

possible. Suppose, that for a particular application, we think that the functions
in Figure 1.1(a) vary too rapidly (i.e. that their characteristic length-scale is
too short). Slower variation is achieved by simply adjusting parameters of the
covariance function. The problem of learning in Gaussian processes is exactly
the problem of finding suitable properties for the covariance function. Note,
that this gives us a model of the data, and characteristics (such a smoothness,modelling and

interpreting characteristic length-scale, etc.) which we can interpret.

We now turn to the classification case, and consider the binary (or two-classification

class) classification problem. An example of this is classifying objects detected
in astronomical sky surveys into stars or galaxies. Our data has the label +1 for
stars and −1 for galaxies, and our task will be to predict π(x), the probability
that an example with input vector x is a star, using as inputs some features
that describe each object. Obviously π(x) should lie in the interval [0, 1]. A
Gaussian process prior over functions does not restrict the output to lie in this
interval, as can be seen from Figure 1.1(a). The approach that we shall adopt
is to squash the prior function f pointwise through a response function whichsquashing function

restricts the output to lie in [0, 1]. A common choice for this function is the
logistic function λ(z) = (1+ exp(−z))−1, illustrated in Figure 1.2(b). Thus the
prior over f induces a prior over probabilistic classifications π.

This set up is illustrated in Figure 1.2 for a 2-d input space. In panel
(a) we see a sample drawn from the prior over functions f which is squashed
through the logistic function (panel (b)). A dataset is shown in panel (c), where
the white and black circles denote classes +1 and −1 respectively. As in the
regression case the effect of the data is to downweight in the posterior those
functions that are incompatible with the data. A contour plot of the posterior
mean for π(x) is shown in panel (d). In this example we have chosen a short
characteristic length-scale for the process so that it can vary fairly rapidly; in

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

1.2 Roadmap 5

−5 0 5
0

1
logistic function

(a) (b)

°

°

°

•

°

°

°

°

°

•

°

•

•

•

•

•

•

°
•

•

0.25

0.5

0.5

0.5

0.75

0.25

(c) (d)

Figure 1.2: Panel (a) shows a sample from prior distribution on f in a 2-d input
space. Panel (b) is a plot of the logistic function λ(z). Panel (c) shows the location
of the data points, where the open circles denote the class label +1, and closed circles
denote the class label −1. Panel (d) shows a contour plot of the mean predictive
probability as a function of x; the decision boundaries between the two classes are
shown by the thicker lines.

this case notice that all of the training points are correctly classified, including
the two “outliers” in the NE and SW corners. By choosing a different length-
scale we can change this behaviour, as illustrated in section 3.7.1.

1.2 Roadmap

The book has a natural split into two parts, with the chapters up to and includ-
ing chapter 5 covering core material, and the remaining chapters covering the
connections to other methods, fast approximations, and more specialized prop-
erties. Some sections are marked by an asterisk. These sections may be omitted
on a first reading, and are not pre-requisites for later (un-starred) material.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6 Introduction

Chapter 2 contains the definition of Gaussian processes, in particular for theregression

use in regression. It also discusses the computations needed to make predic-
tions for regression. Under the assumption of Gaussian observation noise the
computations needed to make predictions are tractable and are dominated by
the inversion of a n× n matrix. In a short experimental section, the Gaussian
process model is applied to a robotics task.

Chapter 3 considers the classification problem for both binary and multi-classification

class cases. The use of a non-linear response function means that exact compu-
tation of the predictions is no longer possible analytically. We discuss a number
of approximation schemes, include detailed algorithms for their implementation
and discuss some experimental comparisons.

As discussed above, the key factor that controls the properties of a Gaussiancovariance functions

process is the covariance function. Much of the work on machine learning so far,
has used a very limited set of covariance functions, possibly limiting the power
of the resulting models. In chapter 4 we discuss a number of valid covariance
functions and their properties and provide some guidelines on how to combine
covariance functions into new ones, tailored to specific needs.

Many covariance functions have adjustable parameters, such as the char-learning

acteristic length-scale and variance illustrated in Figure 1.1. Chapter 5 de-
scribes how such parameters can be inferred or learned from the data, based on
either Bayesian methods (using the marginal likelihood) or methods of cross-
validation. Explicit algorithms are provided for some schemes, and some simple
practical examples are demonstrated.

Gaussian process predictors are an example of a class of methods known asconnections

kernel machines; they are distinguished by the probabilistic viewpoint taken.
In chapter 6 we discuss other kernel machines such as support vector machines
(SVMs), splines, least-squares classifiers and relevance vector machines (RVMs),
and their relationships to Gaussian process prediction.

In chapter 7 we discuss a number of more theoretical issues relating totheory

Gaussian process methods including asymptotic analysis, average-case learning
curves and the PAC-Bayesian framework.

One issue with Gaussian process prediction methods is that their basic com-fast approximations

plexity is O(n3), due to the inversion of a n×n matrix. For large datasets this is
prohibitive (in both time and space) and so a number of approximation methods
have been developed, as described in chapter 8.

The main focus of the book is on the core supervised learning problems of
regression and classification. In chapter 9 we discuss some rather less standard
settings that GPs have been used in, and complete the main part of the book
with some conclusions.

Appendix A gives some mathematical background, while Appendix B deals
specifically with Gaussian Markov processes. Appendix C gives details of how
to access the data and programs that were used to make the some of the figures
and run the experiments described in the book.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Chapter 2

Regression

Supervised learning can be divided into regression and classification problems.
Whereas the outputs for classification are discrete class labels, regression is
concerned with the prediction of continuous quantities. For example, in a fi-
nancial application, one may attempt to predict the price of a commodity as
a function of interest rates, currency exchange rates, availability and demand.
In this chapter we describe Gaussian process methods for regression problems;
classification problems are discussed in chapter 3.

There are several ways to interpret Gaussian process (GP) regression models.
One can think of a Gaussian process as defining a distribution over functions,
and inference taking place directly in the space of functions, the function-space two equivalent views

view. Although this view is appealing it may initially be difficult to grasp,
so we start our exposition in section 2.1 with the equivalent weight-space view
which may be more familiar and accessible to many, and continue in section
2.2 with the function-space view. Gaussian processes often have characteristics
that can be changed by setting certain parameters and in section 2.3 we discuss
how the properties change as these parameters are varied. The predictions
from a GP model take the form of a full predictive distribution; in section 2.4
we discuss how to combine a loss function with the predictive distributions
using decision theory to make point predictions in an optimal way. A practical
comparative example involving the learning of the inverse dynamics of a robot
arm is presented in section 2.5. We give some theoretical analysis of Gaussian
process regression in section 2.6, and discuss how to incorporate explicit basis
functions into the models in section 2.7. As much of the material in this chapter
can be considered fairly standard, we postpone most references to the historical
overview in section 2.8.

2.1 Weight-space View

The simple linear regression model where the output is a linear combination of
the inputs has been studied and used extensively. Its main virtues are simplic-

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

8 Regression

ity of implementation and interpretability. Its main drawback is that it only
allows a limited flexibility; if the relationship between input and output can-
not reasonably be approximated by a linear function, the model will give poor
predictions.

In this section we first discuss the Bayesian treatment of the linear model.
We then make a simple enhancement to this class of models by projecting the
inputs into a high-dimensional feature space and applying the linear model
there. We show that in some feature spaces one can apply the “kernel trick” to
carry out computations implicitly in the high dimensional space; this last step
leads to computational savings when the dimensionality of the feature space is
large compared to the number of data points.

We have a training set D of n observations, D = {(xi, yi) | i = 1, . . . , n},training set

where x denotes an input vector (covariates) of dimension D and y denotes
a scalar output or target (dependent variable); the column vector inputs for
all n cases are aggregated in the D × n design matrix 1 X, and the targetsdesign matrix

are collected in the vector y, so we can write D = (X,y). In the regression
setting the targets are real values. We are interested in making inferences about
the relationship between inputs and targets, i.e. the conditional distribution of
the targets given the inputs (but we are not interested in modelling the input
distribution itself).

2.1.1 The Standard Linear Model

We will review the Bayesian analysis of the standard linear regression model
with Gaussian noise

f(x) = x>w, y = f(x) + ε, (2.1)

where x is the input vector, w is a vector of weights (parameters) of the linear
model, f is the function value and y is the observed target value. Often a biasbias, offset

weight or offset is included, but as this can be implemented by augmenting the
input vector x with an additional element whose value is always one, we do not
explicitly include it in our notation. We have assumed that the observed values
y differ from the function values f(x) by additive noise, and we will further
assume that this noise follows an independent, identically distributed Gaussian
distribution with zero mean and variance σ2

n

ε ∼ N (0, σ2
n). (2.2)

This noise assumption together with the model directly gives rise to the likeli-likelihood

hood, the probability density of the observations given the parameters, which is
1In statistics texts the design matrix is usually taken to be the transpose of our definition,

but our choice is deliberate and has the advantage that a data point is a standard (column)
vector.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.1 Weight-space View 9

factored over cases in the training set (because of the independence assumption)
to give

p(y|X,w) =
n∏

i=1

p(yi|xi,w) =
n∏

i=1

1√
2πσn

exp
(
− (yi − x>i w)2

2σ2
n

)
=

1
(2πσ2

n)n/2
exp

(
− 1

2σ2
n

|y −X>w|2
)

= N (X>w, σ2
nI),

(2.3)

where |z| denotes the Euclidean length of vector z. In the Bayesian formalism
we need to specify a prior over the parameters, expressing our beliefs about the prior

parameters before we look at the observations. We put a zero mean Gaussian
prior with covariance matrix Σp on the weights

w ∼ N (0, Σp). (2.4)

The rôle and properties of this prior will be discussed in section 2.2; for now
we will continue the derivation with the prior as specified.

Inference in the Bayesian linear model is based on the posterior distribution posterior

over the weights, computed by Bayes’ rule, (see eq. (A.3))2

posterior =
likelihood× prior

marginal likelihood
, p(w|y, X) =

p(y|X,w)p(w)
p(y|X)

, (2.5)

where the normalizing constant, also known as the marginal likelihood (see page marginal likelihood

19), is independent of the weights and given by

p(y|X) =
∫
p(y|X,w)p(w) dw. (2.6)

The posterior in eq. (2.5) combines the likelihood and the prior, and captures
everything we know about the parameters. Writing only the terms from the
likelihood and prior which depend on the weights, and “completing the square”
we obtain

p(w|X,y) ∝ exp
(
− 1

2σ2
n

(y −X>w)>(y −X>w)
)
exp

(
− 1

2
w>Σ−1

p w
)

∝ exp
(
− 1

2
(w − w̄)>

(1
σ2

n

XX> + Σ−1
p

)
(w − w̄)

)
, (2.7)

where w̄ = σ−2
n (σ−2

n XX> + Σ−1
p)−1Xy, and we recognize the form of the

posterior distribution as Gaussian with mean w̄ and covariance matrix A−1

p(w|X,y) ∼ N (w̄=
1
σ2

n

A−1Xy, A−1), (2.8)

where A = σ−2
n XX> + Σ−1

p . Notice that for this model (and indeed for any
Gaussian posterior) the mean of the posterior distribution p(w|y, X) is also
its mode, which is also called the maximum a posteriori (MAP) estimate of MAP estimate

2Often Bayes’ rule is stated as p(a|b) = p(b|a)p(a)/p(b); here we use it in a form where we
additionally condition everywhere on the inputs X (but neglect this extra conditioning for
the prior which is independent of the inputs).

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

10 Regression

intercept, w
1

sl
op

e,
 w

2

−2 −1 0 1 2
−2

−1

0

1

2

−5 0 5

−5

0

5

input, x

ou
tp

ut
, y

(a) (b)

intercept, w
1

sl
op

e,
 w

2

−2 −1 0 1 2
−2

−1

0

1

2

intercept, w
1

sl
op

e,
 w

2

−2 −1 0 1 2
−2

−1

0

1

2

(c) (d)

Figure 2.1: Example of Bayesian linear model f(x) = w1 + w2x with intercept
w1 and slope parameter w2. Panel (a) shows the contours of the prior distribution
p(w) ∼ N (0, I), eq. (2.4). Panel (b) shows three training points marked by crosses.
Panel (c) shows contours of the likelihood p(y|X,w) eq. (2.3), assuming a noise level of
σn = 1; note that the slope is much more “well determined” than the intercept. Panel
(d) shows the posterior, p(w|X,y) eq. (2.7); comparing the maximum of the posterior
to the likelihood, we see that the intercept has been shrunk towards zero whereas the
more ’well determined’ slope is almost unchanged. All contour plots give the 1 and
2 standard deviation equi-probability contours. Superimposed on the data in panel
(b) are the predictive mean plus/minus two standard deviations of the (noise-free)
predictive distribution p(f∗|x∗, X,y), eq. (2.9).

w. In a non-Bayesian setting the negative log prior is sometimes thought of
as a penalty term, and the MAP point is known as the penalized maximum
likelihood estimate of the weights, and this may cause some confusion between
the two approaches. Note, however, that in the Bayesian setting the MAP
estimate plays no special rôle.3 The penalized maximum likelihood procedure

3In this case, due to symmetries in the model and posterior, it happens that the mean
of the predictive distribution is the same as the prediction at the mean of the posterior.
However, this is not the case in general.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.1 Weight-space View 11

is known in this case as ridge regression [Hoerl and Kennard, 1970] because of ridge regression

the effect of the quadratic penalty term 1
2w

>Σ−1
p w from the log prior.

To make predictions for a test case we average over all possible parameter predictive distribution

values, weighted by their posterior probability. This is in contrast to non-
Bayesian schemes, where a single parameter is typically chosen by some crite-
rion. Thus the predictive distribution for f∗ , f(x∗) at x∗ is given by averaging
the output of all possible linear models w.r.t. the Gaussian posterior

p(f∗|x∗, X,y) =
∫
p(f∗|x∗,w)p(w|X,y) dw

= N
(1
σ2

n

x>∗ A
−1Xy, x>∗ A

−1x∗
)
.

(2.9)

The predictive distribution is again Gaussian, with a mean given by the poste-
rior mean of the weights from eq. (2.8) multiplied by the test input, as one would
expect from symmetry considerations. The predictive variance is a quadratic
form of the test input with the posterior covariance matrix, showing that the
predictive uncertainties grow with the magnitude of the test input, as one would
expect for a linear model.

An example of Bayesian linear regression is given in Figure 2.1. Here we
have chosen a 1-d input space so that the weight-space is two-dimensional and
can be easily visualized. Contours of the Gaussian prior are shown in panel (a).
The data are depicted as crosses in panel (b). This gives rise to the likelihood
shown in panel (c) and the posterior distribution in panel (d). The predictive
distribution and its error bars are also marked in panel (b).

2.1.2 Projections of Inputs into Feature Space

In the previous section we reviewed the Bayesian linear model which suffers
from limited expressiveness. A very simple idea to overcome this problem is to
first project the inputs into some high dimensional space using a set of basis feature space

functions and then apply the linear model in this space instead of directly on
the inputs themselves. For example, a scalar input x could be projected into
the space of powers of x: φ(x) = (1, x, x2, x3, . . .)> to implement polynomial polynomial regression

regression. As long as the projections are fixed functions (i.e. independent of
the parameters w) the model is still linear in the parameters, and therefore linear in the parameters

analytically tractable.4 This idea is also used in classification, where a dataset
which is not linearly separable in the original data space may become linearly
separable in a high dimensional feature space, see section 3.3. Application of
this idea begs the question of how to choose the basis functions? As we shall
demonstrate (in chapter 5), the Gaussian process formalism allows us to answer
this question. For now, we assume that the basis functions are given.

Specifically, we introduce the function φ(x) which maps a D-dimensional
input vector x into an N dimensional feature space. Further let the matrix

4Models with adaptive basis functions, such as e.g. multilayer perceptrons, may at first
seem like a useful extension, but they are much harder to treat, except in the limit of an
infinite number of hidden units, see section 4.2.3.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

12 Regression

Φ(X) be the aggregation of columns φ(x) for all cases in the training set. Now
the model is

f(x) = φ(x)>w, (2.10)

where the vector of parameters now has length N . The analysis for this model
is analogous to the standard linear model, except that everywhere Φ(X) is
substituted for X. Thus the predictive distribution becomesexplicit feature space

formulation

f∗|x∗, X,y ∼ N
(1
σ2

n

φ(x∗)>A−1Φy, φ(x∗)>A−1φ(x∗)
)

(2.11)

with Φ = Φ(X) and A = σ−2
n ΦΦ> + Σ−1

p . To make predictions using this
equation we need to invert the A matrix of size N × N which may not be
convenient if N , the dimension of the feature space, is large. However, we can
rewrite the equation in the following wayalternative formulation

f∗|x∗, X,y ∼ N
(
φ>∗ ΣpΦ(K + σ2

nI)
−1y,

φ>∗ Σpφ∗ − φ
>
∗ ΣpΦ(K + σ2

nI)
−1Φ>Σpφ∗

)
,

(2.12)

where we have used the shorthand φ(x∗) = φ∗ and defined K = Φ>ΣpΦ.
To show this for the mean, first note that using the definitions of A and K
we have σ−2

n Φ(K + σ2
nI) = σ−2

n Φ(Φ>ΣpΦ + σ2
nI) = AΣpΦ. Now multiplying

through by A−1 from left and (K + σ2
nI)

−1 from the right gives σ−2
n A−1Φ =

ΣpΦ(K+σ2
nI)

−1, showing the equivalence of the mean expressions in eq. (2.11)
and eq. (2.12). For the variance we use the matrix inversion lemma, eq. (A.9),
setting Z−1 = Σp, W−1 = σ2

nI and V = U = Φ therein. In eq. (2.12) we
need to invert matrices of size n × n which is more convenient when n < N .computational load

Geometrically, note that n datapoints can span at most n dimensions in the
feature space.

Notice that in eq. (2.12) the feature space always enters in the form of
Φ>ΣpΦ, φ>∗ ΣpΦ, or φ>∗ Σpφ∗; thus the entries of these matrices are invariably of
the form φ(x)>Σpφ(x′) where x and x′ are in either the training or the test sets.
Let us define k(x,x′) = φ(x)>Σpφ(x′). For reasons that will become clear later
we call k(·, ·) a covariance function or kernel . Notice that φ(x)>Σpφ(x′) is ankernel

inner product (with respect to Σp). As Σp is positive definite we can define Σ1/2
p

so that (Σ1/2
p)2 = Σp; for example if the SVD (singular value decomposition)

of Σp = UDU>, where D is diagonal, then one form for Σ1/2
p is UD1/2U>.

Then defining ψ(x) = Σ1/2
p φ(x) we obtain a simple dot product representation

k(x,x′) = ψ(x) ·ψ(x′).

If an algorithm is defined solely in terms of inner products in input space
then it can be lifted into feature space by replacing occurrences of those inner
products by k(x,x′); this is sometimes called the kernel trick. This technique iskernel trick

particularly valuable in situations where it is more convenient to compute the
kernel than the feature vectors themselves. As we will see in the coming sections,
this often leads to considering the kernel as the object of primary interest, and
its corresponding feature space as having secondary practical importance.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.2 Function-space View 13

2.2 Function-space View

An alternative and equivalent way of reaching identical results to the previous
section is possible by considering inference directly in function space. We use
a Gaussian process (GP) to describe a distribution over functions. Formally:

Definition 2.1 A Gaussian process is a collection of random variables, any Gaussian process

finite number of which have a joint Gaussian distribution. �

A Gaussian process is completely specified by its mean function and co- covariance and
mean functionvariance function. We define mean function m(x) and the covariance function

k(x,x′) of a real process f(x) as

m(x) = E[f(x)],
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))],

(2.13)

and will write the Gaussian process as

f(x) ∼ GP
(
m(x), k(x,x′)

)
. (2.14)

Usually, for notational simplicity we will take the mean function to be zero,
although this need not be done, see section 2.7.

In our case the random variables represent the value of the function f(x)
at location x. Often, Gaussian processes are defined over time, i.e. where the
index set of the random variables is time. This is not (normally) the case in index set ≡

input domainour use of GPs; here the index set X is the set of possible inputs, which could
be more general, e.g. RD. For notational convenience we use the (arbitrary)
enumeration of the cases in the training set to identify the random variables
such that fi , f(xi) is the random variable corresponding to the case (xi, yi)
as would be expected.

A Gaussian process is defined as a collection of random variables. Thus, the
definition automatically implies a consistency requirement, which is also some-
times known as the marginalization property. This property simply means marginalization

propertythat if the GP e.g. specifies (y1, y2) ∼ N (µ,Σ), then it must also specify
y1 ∼ N (µ1,Σ11) where Σ11 is the relevant submatrix of Σ, see eq. (A.6).
In other words, examination of a larger set of variables does not change the
distribution of the smaller set. Notice that the consistency requirement is au-
tomatically fulfilled if the covariance function specifies entries of the covariance
matrix.5 The definition does not exclude Gaussian processes with finite index finite index set

sets (which would be simply Gaussian distributions), but these are not partic-
ularly interesting for our purposes.

5Note, however, that if you instead specified e.g. a function for the entries of the inverse
covariance matrix, then the marginalization property would no longer be fulfilled, and one
could not think of this as a consistent collection of random variables—this would not qualify
as a Gaussian process.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

14 Regression

A simple example of a Gaussian process can be obtained from our BayesianBayesian linear model
is a Gaussian process linear regression model f(x) = φ(x)>w with prior w ∼ N (0,Σp). We have for

the mean and covariance

E[f(x)] = φ(x)>E[w] = 0,

E[f(x)f(x′)] = φ(x)>E[ww>]φ(x′) = φ(x)>Σpφ(x′).
(2.15)

Thus f(x) and f(x′) are jointly Gaussian with zero mean and covariance given
by φ(x)>Σpφ(x′). Indeed, the function values f(x1), . . . , f(xn) corresponding
to any number of input points n are jointly Gaussian, although if N < n then
this Gaussian is singular (as the joint covariance matrix will be of rank N).

In this chapter our running example of a covariance function will be the
squared exponential6 (SE) covariance function; other covariance functions are
discussed in chapter 4. The covariance function specifies the covariance between
pairs of random variables

cov
(
f(xp), f(xq)

)
= k(xp,xq) = exp

(
− 1

2 |xp − xq|2
)
. (2.16)

Note, that the covariance between the outputs is written as a function of the
inputs. For this particular covariance function, we see that the covariance is
almost unity between variables whose corresponding inputs are very close, and
decreases as their distance in the input space increases.

It can be shown (see section 4.3.1) that the squared exponential covariance
function corresponds to a Bayesian linear regression model with an infinite
number of basis functions. Indeed for every positive definite covariance functionbasis functions

k(·, ·), there exists a (possibly infinite) expansion in terms of basis functions
(see Mercer’s theorem in section 4.3). We can also obtain the SE covariance
function from the linear combination of an infinite number of Gaussian-shaped
basis functions, see eq. (4.13) and eq. (4.30).

The specification of the covariance function implies a distribution over func-
tions. To see this, we can draw samples from the distribution of functions evalu-
ated at any number of points; in detail, we choose a number of input points,7 X∗
and write out the corresponding covariance matrix using eq. (2.16) elementwise.
Then we generate a random Gaussian vector with this covariance matrix

f∗ ∼ N
(
0,K(X∗, X∗)

)
, (2.17)

and plot the generated values as a function of the inputs. Figure 2.2(a) shows
three such samples. The generation of multivariate Gaussian samples is de-
scribed in section A.2.

In the example in Figure 2.2 the input values were equidistant, but this
need not be the case. Notice that “informally” the functions look smooth.smoothness

In fact the squared exponential covariance function is infinitely differentiable,
leading to the process being infinitely mean-square differentiable (see section
4.1). We also see that the functions seem to have a characteristic length-scale,characteristic

length-scale 6Sometimes this covariance function is called the Radial Basis Function (RBF) or Gaussian;
here we prefer squared exponential.

7Technically, these input points play the rôle of test inputs and therefore carry a subscript
asterisk; this will become clearer later when both training and test points are involved.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.2 Function-space View 15

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

−5 0 5

−2

−1

0

1

2

input, x
ou

tp
ut

, f
(x

)

(a), prior (b), posterior

Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp−xq| by |xp−xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors affect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f∗ according to the
prior is [

f
f∗

]
∼ N

(
0,
[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (2.18)

If there are n training points and n∗ test points then K(X,X∗) denotes the
n × n∗ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X,X), K(X∗, X∗) and K(X∗, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

16 Regression

though this strategy would not be computationally very efficient. Fortunately,
in probabilistic terms this operation is extremely simple, corresponding to con-
ditioning the joint Gaussian prior distribution on the observations (see section
A.2 for further details) to givenoise-free predictive

distribution
f∗|X∗, X, f ∼ N

(
K(X∗, X)K(X,X)−1f ,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)
)
.

(2.19)

Function values f∗ (corresponding to test inputs X∗) can be sampled from the
joint posterior distribution by evaluating the mean and covariance matrix from
eq. (2.19) and generating samples according to the method described in section
A.2.

Figure 2.2(b) shows the results of these computations given the five data-
points marked with + symbols. Notice that it is trivial to extend these compu-
tations to multidimensional inputs – one simply needs to change the evaluation
of the covariance function in accordance with eq. (2.16), although the resulting
functions may be harder to display graphically.

Prediction using Noisy Observations

It is typical for more realistic modelling situations that we do not have access
to function values themselves, but only noisy versions thereof y = f(x) + ε.8

Assuming additive independent identically distributed Gaussian noise ε with
variance σ2

n, the prior on the noisy observations becomes

cov(yp, yq) = k(xp,xq) + σ2
nδpq or cov(y) = K(X,X) + σ2

nI, (2.20)

where δpq is a Kronecker delta which is one iff p = q and zero otherwise. It
follows from the independence9 assumption about the noise, that a diagonal
matrix10 is added, in comparison to the noise free case, eq. (2.16). Introducing
the noise term in eq. (2.18) we can write the joint distribution of the observed
target values and the function values at the test locations under the prior as[

y
f∗

]
∼ N

(
0,
[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (2.21)

Deriving the conditional distribution corresponding to eq. (2.19) we arrive atpredictive distribution

the key predictive equations for Gaussian process regression

f∗|X,y, X∗ ∼ N
(
f̄∗, cov(f∗)

)
, where (2.22)

f̄∗ , E[f∗|X,y, X∗] = K(X∗, X)[K(X,X) + σ2
nI]

−1y, (2.23)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI
]−1

K(X,X∗). (2.24)

8There are some situations where it is reasonable to assume that the observations are
noise-free, for example for computer simulations, see e.g. Sacks et al. [1989].

9More complicated noise models with non-trivial covariance structure can also be handled,
see section 9.2.

10Notice that the Kronecker delta is on the index of the cases, not the value of the input;
for the signal part of the covariance function the input value is the index set to the random
variables describing the function, for the noise part it is the identity of the point.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.2 Function-space View 17

Observations

Gaussian field

Inputs

y1 yc

x1 x2 x∗ xc

����
y∗

����
f1 ������������

f∗ ��������
fc ����6 6 6 6

6 6 6 6 6 6 6

Figure 2.3: Graphical model (chain graph) for a GP for regression. Squares rep-
resent observed variables and circles represent unknowns. The thick horizontal bar
represents a set of fully connected nodes. Note that an observation yi is conditionally
independent of all other nodes given the corresponding latent variable, fi. Because of
the marginalization property of GPs addition of further inputs, x, latent variables, f ,
and unobserved targets, y∗, does not change the distribution of any other variables.

Notice that we now have exact correspondence with the weight space view in
eq. (2.12) when identifying K(C,D) = Φ(C)>ΣpΦ(D), where C,D stand for ei-
ther X or X∗. For any set of basis functions, we can compute the corresponding correspondence with

weight-space viewcovariance function as k(xp,xq) = φ(xp)>Σpφ(xq); conversely, for every (posi-
tive definite) covariance function k, there exists a (possibly infinite) expansion
in terms of basis functions, see section 4.3.

The expressions involving K(X,X), K(X,X∗) and K(X∗, X∗) etc. can look compact notation

rather unwieldy, so we now introduce a compact form of the notation setting
K = K(X,X) and K∗ = K(X,X∗). In the case that there is only one test
point x∗ we write k(x∗) = k∗ to denote the vector of covariances between the
test point and the n training points. Using this compact notation and for a
single test point x∗, equations 2.23 and 2.24 reduce to

f̄∗ = k>∗ (K + σ2
nI)

−1y, (2.25)

V[f∗] = k(x∗,x∗)− k>∗ (K + σ2
nI)

−1k∗. (2.26)

Let us examine the predictive distribution as given by equations 2.25 and 2.26. predictive distribution

Note first that the mean prediction eq. (2.25) is a linear combination of obser-
vations y; this is sometimes referred to as a linear predictor . Another way to linear predictor

look at this equation is to see it as a linear combination of n kernel functions,
each one centered on a training point, by writing

f̄(x∗) =
n∑

i=1

αik(xi,x∗) (2.27)

where α = (K + σ2
nI)

−1y. The fact that the mean prediction for f(x∗) can be
written as eq. (2.27) despite the fact that the GP can be represented in terms
of a (possibly infinite) number of basis functions is one manifestation of the
representer theorem; see section 6.2 for more on this point. We can understand representer theorem

this result intuitively because although the GP defines a joint Gaussian dis-
tribution over all of the y variables, one for each point in the index set X , for

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

18 Regression

−5 0 5

−2

−1

0

1

2

input, x

ou
tp

ut
, f

(x
)

−5 0 5

−0.2

0

0.2

0.4

0.6

input, x

po
st

. c
ov

ar
ia

nc
e,

 c
ov

(f
(x

),
f(

x’
)) x’=−2

x’=1
x’=3

(a), posterior (b), posterior covariance

Figure 2.4: Panel (a) is identical to Figure 2.2(b) showing three random functions
drawn from the posterior. Panel (b) shows the posterior co-variance between f(x) and
f(x′) for the same data for three different values of x′. Note, that the covariance at
close points is high, falling to zero at the training points (where there is no variance,
since it is a noise-free process), then becomes negative, etc. This happens because if
the smooth function happens to be less than the mean on one side of the data point,
it tends to exceed the mean on the other side, causing a reversal of the sign of the
covariance at the data points. Note for contrast that the prior covariance is simply
of Gaussian shape and never negative.

making predictions at x∗ we only care about the (n+1)-dimensional distribution
defined by the n training points and the test point. As a Gaussian distribu-
tion is marginalized by just taking the relevant block of the joint covariance
matrix (see section A.2) it is clear that conditioning this (n+1)-dimensional
distribution on the observations gives us the desired result. A graphical model
representation of a GP is given in Figure 2.3.

Note also that the variance in eq. (2.24) does not depend on the observed
targets, but only on the inputs; this is a property of the Gaussian distribution.
The variance is the difference between two terms: the first term K(X∗, X∗) is
simply the prior covariance; from that is subtracted a (positive) term, repre-
senting the information the observations gives us about the function. We can
very simply compute the predictive distribution of test targets y∗ by addingnoisy predictions

σ2
nI to the variance in the expression for cov(f∗).

The predictive distribution for the GP model gives more than just pointwisejoint predictions

errorbars of the simplified eq. (2.26). Although not stated explicitly, eq. (2.24)
holds unchanged when X∗ denotes multiple test inputs; in this case the co-
variance of the test targets are computed (whose diagonal elements are the
pointwise variances). In fact, eq. (2.23) is the mean function and eq. (2.24) the
covariance function of the (Gaussian) posterior process; recall the definitionposterior process

of Gaussian process from page 13. The posterior covariance in illustrated in
Figure 2.4(b).

It will be useful (particularly for chapter 5) to introduce the marginal likeli-
hood (or evidence) p(y|X) at this point. The marginal likelihood is the integralmarginal likelihood

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.3 Varying the Hyperparameters 19

input: X (inputs), y (targets), k (covariance function), σ2
n (noise level),

x∗ (test input)
2: L := cholesky(K + σ2

nI)
α := L>\(L\y)

4: f̄∗ := k>∗ α

}
predictive mean eq. (2.25)

v := L\k∗
6: V[f∗] := k(x∗,x∗)− v>v

}
predictive variance eq. (2.26)

log p(y|X) := − 1
2y

>α−
∑

i logLii − n
2 log 2π eq. (2.30)

8: return: f̄∗ (mean), V[f∗] (variance), log p(y|X) (log marginal likelihood)

Algorithm 2.1: Predictions and log marginal likelihood for Gaussian process regres-
sion. The implementation addresses the matrix inversion required by eq. (2.25) and
(2.26) using Cholesky factorization, see section A.4. For multiple test cases lines
4-6 are repeated. The log determinant required in eq. (2.30) is computed from the
Cholesky factor (for large n it may not be possible to represent the determinant itself).
The computational complexity is n3/6 for the Cholesky decomposition in line 2, and
n2/2 for solving triangular systems in line 3 and (for each test case) in line 5.

of the likelihood times the prior

p(y|X) =
∫
p(y|f , X)p(f |X) df . (2.28)

The term marginal likelihood refers to the marginalization over the function
values f . Under the Gaussian process model the prior is Gaussian, f |X ∼
N (0,K), or

log p(f |X) = − 1
2 f
>K−1f − 1

2 log |K| − n
2 log 2π, (2.29)

and the likelihood is a factorized Gaussian y|f ∼ N (f , σ2
nI) so we can make use

of equations A.7 and A.8 to perform the integration yielding the log marginal
likelihood

log p(y|X) = − 1
2y

>(K + σ2
nI)

−1y − 1
2 log |K + σ2

nI| − n
2 log 2π. (2.30)

This result can also be obtained directly by observing that y ∼ N (0,K+σ2
nI).

A practical implementation of Gaussian process regression (GPR) is shown
in Algorithm 2.1. The algorithm uses Cholesky decomposition, instead of di-
rectly inverting the matrix, since it is faster and numerically more stable, see
section A.4. The algorithm returns the predictive mean and variance for noise
free test data—to compute the predictive distribution for noisy test data y∗,
simply add the noise variance σ2

n to the predictive variance of f∗.

2.3 Varying the Hyperparameters

Typically the covariance functions that we use will have some free parameters.
For example, the squared-exponential covariance function in one dimension has
the following form

ky(xp, xq) = σ2
f exp

(
− 1

2`2
(xp − xq)2

)
+ σ2

nδpq. (2.31)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

20 Regression

−5 0 5

−3

−2

−1

0

1

2

3

input, x
ou

tp
ut

, y
(a), ` = 1

−5 0 5

−3

−2

−1

0

1

2

3

input, x

ou
tp

ut
, y

−5 0 5

−3

−2

−1

0

1

2

3

input, x

ou
tp

ut
, y

(b), ` = 0.3 (c), ` = 3

Figure 2.5: (a) Data is generated from a GP with hyperparameters (`, σf , σn) =
(1, 1, 0.1), as shown by the + symbols. Using Gaussian process prediction with these
hyperparameters we obtain a 95% confidence region for the underlying function f
(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this
time for hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.

The covariance is denoted ky as it is for the noisy targets y rather than for the
underlying function f . Observe that the length-scale `, the signal variance σ2

f

and the noise variance σ2
n can be varied. In general we call the free parametershyperparameters

hyperparameters.11

In chapter 5 we will consider various methods for determining the hyperpa-
rameters from training data. However, in this section our aim is more simply to
explore the effects of varying the hyperparameters on GP prediction. Consider
the data shown by + signs in Figure 2.5(a). This was generated from a GP
with the SE kernel with (`, σf , σn) = (1, 1, 0.1). The figure also shows the 2
standard-deviation error bars for the predictions obtained using these values of
the hyperparameters, as per eq. (2.24). Notice how the error bars get larger
for input values that are distant from any training points. Indeed if the x-axis

11We refer to the parameters of the covariance function as hyperparameters to emphasize
that they are parameters of a non-parametric model; in accordance with the weight-space
view, section 2.1, the parameters (weights) of the underlying parametric model have been
integrated out.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.4 Decision Theory for Regression 21

were extended one would see the error bars reflect the prior standard deviation
of the process σf away from the data.

If we set the length-scale shorter so that ` = 0.3 and kept the other pa-
rameters the same, then generating from this process we would expect to see
plots like those in Figure 2.5(a) except that the x-axis should be rescaled by a
factor of 0.3; equivalently if the same x-axis was kept as in Figure 2.5(a) then
a sample function would look much more wiggly.

If we make predictions with a process with ` = 0.3 on the data generated too short length-scale

from the ` = 1 process then we obtain the result in Figure 2.5(b). The remaining
two parameters were set by optimizing the marginal likelihood, as explained in
chapter 5. In this case the noise parameter is reduced to σn = 0.00005 as the
greater flexibility of the “signal” means that the noise level can be reduced.
This can be observed at the two datapoints near x = 2.5 in the plots. In Figure
2.5(a) (` = 1) these are essentially explained as a similar function value with
differing noise. However, in Figure 2.5(b) (` = 0.3) the noise level is very low,
so these two points have to be explained by a sharp variation in the value of
the underlying function f . Notice also that the short length-scale means that
the error bars in Figure 2.5(b) grow rapidly away from the datapoints.

In contrast, we can set the length-scale longer, for example to ` = 3, as shown too long length-scale

in Figure 2.5(c). Again the remaining two parameters were set by optimizing the
marginal likelihood. In this case the noise level has been increased to σn = 0.89
and we see that the data is now explained by a slowly varying function with a
lot of noise.

Of course we can take the position of a quickly-varying signal with low noise,
or a slowly-varying signal with high noise to extremes; the former would give rise
to a white-noise process model for the signal, while the latter would give rise to a
constant signal with added white noise. Under both these models the datapoints
produced should look like white noise. However, studying Figure 2.5(a) we see
that white noise is not a convincing model of the data, as the sequence of y’s does
not alternate sufficiently quickly but has correlations due to the variability of
the underlying function. Of course this is relatively easy to see in one dimension, model comparison

but methods such as the marginal likelihood discussed in chapter 5 generalize
to higher dimensions and allow us to score the various models. In this case the
marginal likelihood gives a clear preference for (`, σf , σn) = (1, 1, 0.1) over the
other two alternatives.

2.4 Decision Theory for Regression

In the previous sections we have shown how to compute predictive distributions
for the outputs y∗ corresponding to the novel test input x∗. The predictive dis-
tribution is Gaussian with mean and variance given by eq. (2.25) and eq. (2.26).
In practical applications, however, we are often forced to make a decision about
how to act, i.e. we need a point-like prediction which is optimal in some sense. optimal predictions

To this end we need a loss function, L(ytrue, yguess), which specifies the loss (or loss function

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

22 Regression

penalty) incurred by guessing the value yguess when the true value is ytrue. For
example, the loss function could equal the absolute deviation between the guess
and the truth.

Notice that we computed the predictive distribution without reference to
the loss function. In non-Bayesian paradigms, the model is typically trainednon-Bayesian paradigm

by minimizing the empirical risk (or loss). In contrast, in the Bayesian settingBayesian paradigm
there is a clear separation between the likelihood function (used for training, in
addition to the prior) and the loss function. The likelihood function describes
how the noisy measurements are assumed to deviate from the underlying noise-
free function. The loss function, on the other hand, captures the consequences
of making a specific choice, given an actual true state. The likelihood and loss
function need not have anything in common.12

Our goal is to make the point prediction yguess which incurs the smallest loss,
but how can we achieve that when we don’t know ytrue? Instead, we minimize
the expected loss or risk, by averaging w.r.t. our model’s opinion as to what theexpected loss, risk

truth might be

R̃L(yguess|x∗) =
∫
L(y∗, yguess)p(y∗|x∗,D) dy∗. (2.32)

Thus our best guess, in the sense that it minimizes the expected loss, is

yoptimal|x∗ = argmin
yguess

R̃L(yguess|x∗). (2.33)

In general the value of yguess that minimizes the risk for the loss function |yguess−absolute error loss

y∗| is the median of p(y∗|x∗,D), while for the squared loss (yguess − y∗)2 it issquared error loss

the mean of this distribution. When the predictive distribution is Gaussian
the mean and the median coincide, and indeed for any symmetric loss function
and symmetric predictive distribution we always get yguess as the mean of the
predictive distribution. However, in many practical problems the loss functions
can be asymmetric, e.g. in safety critical applications, and point predictions
may be computed directly from eq. (2.32) and eq. (2.33). A comprehensive
treatment of decision theory can be found in Berger [1985].

2.5 An Example Application

In this section we use Gaussian process regression to learn the inverse dynamics
of a seven degrees-of-freedom SARCOS anthropomorphic robot arm. The taskrobot arm

is to map from a 21-dimensional input space (7 joint positions, 7 joint velocities,
7 joint accelerations) to the corresponding 7 joint torques. This task has pre-
viously been used to study regression algorithms by Vijayakumar and Schaal
[2000], Vijayakumar et al. [2002] and Vijayakumar et al. [2005].13 Following

12Beware of fallacious arguments like: a Gaussian likelihood implies a squared error loss
function.

13We thank Sethu Vijayakumar for providing us with the data.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.5 An Example Application 23

this previous work we present results below on just one of the seven mappings,
from the 21 input variables to the first of the seven torques.

One might ask why it is necessary to learn this mapping; indeed there exist why learning?

physics-based rigid-body-dynamics models which allow us to obtain the torques
from the position, velocity and acceleration variables. However, the real robot
arm is actuated hydraulically and is rather lightweight and compliant, so the
assumptions of the rigid-body-dynamics model are violated (as we see below).
It is worth noting that the rigid-body-dynamics model is nonlinear, involving
trigonometric functions and squares of the input variables.

An inverse dynamics model can be used in the following manner: a planning
module decides on a trajectory that takes the robot from its start to goal states,
and this specifies the desired positions, velocities and accelerations at each time.
The inverse dynamics model is used to compute the torques needed to achieve
this trajectory and errors are corrected using a feedback controller.

The dataset consists of 48,933 input-output pairs, of which 44,484 were used
as a training set and the remaining 4,449 were used as a test set. The inputs
were linearly rescaled to have zero mean and unit variance on the training set.
The outputs were centered so as to have zero mean on the training set.

Given a prediction method, we can evaluate the quality of predictions in
several ways. Perhaps the simplest is the squared error loss, where we compute
the squared residual (y∗ − f̄(x∗))2 between the mean prediction and the target
at each test point. This can be summarized by the mean squared error (MSE), MSE

by averaging over the test set. However, this quantity is sensitive to the overall
scale of the target values, so it makes sense to normalize by the variance of the
targets of the test cases to obtain the standardized mean squared error (SMSE).
This causes the trivial method of guessing the mean of the training targets to SMSE

have a SMSE of approximately 1.

Additionally if we produce a predictive distribution at each test input we
can evaluate the negative log probability of the target under the model.14 As
GPR produces a Gaussian predictive density, one obtains

− log p(y∗|D,x∗) =
1
2

log(2πσ2
∗) +

(y∗ − f̄(x∗))2

2σ2
∗

, (2.34)

where the predictive variance σ2
∗ for GPR is computed as σ2

∗ = V(f∗) + σ2
n,

where V(f∗) is given by eq. (2.26); we must include the noise variance σ2
n as we

are predicting the noisy target y∗. This loss can be standardized by subtracting
the loss that would be obtained under the trivial model which predicts using
a Gaussian with the mean and variance of the training data. We denote this
the standardized log loss (SLL). The mean SLL is denoted MSLL. Thus the MSLL

MSLL will be approximately zero for simple methods and negative for better
methods.

A number of models were tested on the data. A linear regression (LR) model
provides a simple baseline for the SMSE. By estimating the noise level from the

14 It makes sense to use the negative log probability so as to obtain a loss, not a utility.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

24 Regression

Method SMSE MSLL
LR 0.075 -1.29
RBD 0.104 –
LWPR 0.040 –
GPR 0.011 -2.25

Table 2.1: Test results on the inverse dynamics problem for a number of different
methods. The “–” denotes a missing entry, caused by two methods not producing full
predictive distributions, so MSLL could not be evaluated.

residuals on the training set one can also obtain a predictive variance and thus
get a MSLL value for LR. The rigid-body-dynamics (RBD) model has a number
of free parameters; these were estimated by Vijayakumar et al. [2005] using a
least-squares fitting procedure. We also give results for the locally weighted
projection regression (LWPR) method of Vijayakumar et al. [2005] which is an
on-line method that cycles through the dataset multiple times. For the GP
models it is computationally expensive to make use of all 44,484 training cases
due to the O(n3) scaling of the basic algorithm. In chapter 8 we present several
different approximate GP methods for large datasets. The result given in Table
2.1 was obtained with the subset of regressors (SR) approximation with a subset
size of 4096. This result is taken from Table 8.1, which gives full results of the
various approximation methods applied to the inverse dynamics problem. The
squared exponential covariance function was used with a separate length-scale
parameter for each of the 21 input dimensions, plus the signal and noise variance
parameters σ2

f and σ2
n. These parameters were set by optimizing the marginal

likelihood eq. (2.30) on a subset of the data (see also chapter 5).

The results for the various methods are presented in Table 2.1. Notice that
the problem is quite non-linear, so the linear regression model does poorly in
comparison to non-linear methods.15 The non-linear method LWPR improves
over linear regression, but is outperformed by GPR.

2.6 Smoothing, Weight Functions and Equiva-
lent Kernels

Gaussian process regression aims to reconstruct the underlying signal f by
removing the contaminating noise ε. To do this it computes a weighted average
of the noisy observations y as f̄(x∗) = k(x∗)>(K+σ2

nI)
−1y; as f̄(x∗) is a linear

combination of the y values, Gaussian process regression is a linear smootherlinear smoother

(see Hastie and Tibshirani [1990, sec. 2.8] for further details). In this section
we study smoothing first in terms of a matrix analysis of the predictions at the
training points, and then in terms of the equivalent kernel.

15It is perhaps surprising that RBD does worse than linear regression. However, Stefan
Schaal (pers. comm., 2004) states that the RBD parameters were optimized on a very large
dataset, of which the training data used here is subset, and if the RBD model were optimized
w.r.t. this training set one might well expect it to outperform linear regression.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.6 Smoothing, Weight Functions and Equivalent Kernels 25

The predicted mean values f̄ at the training points are given by

f̄ = K(K + σ2
nI)

−1y. (2.35)

Let K have the eigendecomposition K =
∑n

i=1λiuiu>i , where λi is the ith eigendecomposition

eigenvalue and ui is the corresponding eigenvector. As K is real and sym-
metric positive semidefinite, its eigenvalues are real and non-negative, and its
eigenvectors are mutually orthogonal. Let y =

∑n
i=1γiui for some coefficients

γi = u>i y. Then

f̄ =
n∑

i=1

γiλi

λi + σ2
n

ui. (2.36)

Notice that if λi/(λi + σ2
n)� 1 then the component in y along ui is effectively

eliminated. For most covariance functions that are used in practice the eigen-
values are larger for more slowly varying eigenvectors (e.g. fewer zero-crossings)
so that this means that high-frequency components in y are smoothed out.
The effective number of parameters or degrees of freedom of the smoother is degrees of freedom

defined as tr(K(K + σ2
nI)

−1) =
∑n

i=1 λi/(λi + σ2
n), see Hastie and Tibshirani

[1990, sec. 3.5]. Notice that this counts the number of eigenvectors which are
not eliminated.

We can define a vector of functions h(x∗) = (K + σ2
nI)

−1k(x∗). Thus we
have f̄(x∗) = h(x∗)>y, making it clear that the mean prediction at a point
x∗ is a linear combination of the target values y. For a fixed test point x∗,
h(x∗) gives the vector of weights applied to targets y. h(x∗) is called the weight
function [Silverman, 1984]. As Gaussian process regression is a linear smoother, weight function

the weight function does not depend on y. Note the difference between a
linear model, where the prediction is a linear combination of the inputs, and a
linear smoother, where the prediction is a linear combination of the training set
targets.

Understanding the form of the weight function is made complicated by the
matrix inversion ofK+σ2

nI and the fact thatK depends on the specific locations
of the n datapoints. Idealizing the situation one can consider the observations
to be “smeared out” in x-space at some density of observations. In this case
analytic tools can be brought to bear on the problem, as shown in section 7.1.
By analogy to kernel smoothing, Silverman [1984] called the idealized weight
function the equivalent kernel ; see also Girosi et al. [1995, sec. 2.1]. equivalent kernel

A kernel smoother centres a kernel function16 κ on x∗ and then computes kernel smoother

κi = κ(|xi − x∗|/`) for each data point (xi, yi), where ` is a length-scale. The
Gaussian is a commonly used kernel function. The prediction for f(x∗) is
computed as f̂(x∗) =

∑n
i=1wiyi where wi = κi/

∑n
j=1 κj . This is also known

as the Nadaraya-Watson estimator, see e.g. Scott [1992, sec. 8.1].

The weight function and equivalent kernel for a Gaussian process are illus-
trated in Figure 2.6 for a one-dimensional input variable x. We have used the
squared exponential covariance function and have set the length-scale ` = 0.0632
(so that `2 = 0.004). There are n = 50 training points spaced randomly along

16Note that this kernel function does not need to be a valid covariance function.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

26 Regression

0 0.2 0.4 0.6 0.8 1

0

0.2

0 0.2 0.4 0.6 0.8 1

0

0.2

(a) (b)

0 0.2 0.4 0.6 0.8 1

0

0.05

0 0.2 0.4 0.6 0.8 1

0

0.1
10
250

(c) (d)

Figure 2.6: Panels (a)-(c) show the weight function h(x∗) (dots) corresponding to
the n = 50 training points, the equivalent kernel (solid) and the original squared
exponential kernel (dashed). Panel (d) shows the equivalent kernels for two different
data densities. See text for further details. The small cross at the test point is to
scale in all four plots.

the x-axis. Figures 2.6(a) and 2.6(b) show the weight function and equivalent
kernel for x∗ = 0.5 and x∗ = 0.05 respectively, for σ2

n = 0.1. Figure 2.6(c) is also
for x∗ = 0.5 but uses σ2

n = 10. In each case the dots correspond to the weight
function h(x∗) and the solid line is the equivalent kernel, whose construction is
explained below. The dashed line shows a squared exponential kernel centered
on the test point, scaled to have the same height as the maximum value in the
equivalent kernel. Figure 2.6(d) shows the variation in the equivalent kernel as
a function of n, the number of datapoints in the unit interval.

Many interesting observations can be made from these plots. Observe that
the equivalent kernel has (in general) a shape quite different to the original SE
kernel. In Figure 2.6(a) the equivalent kernel is clearly oscillatory (with negative
sidelobes) and has a higher spatial frequency than the original kernel. Figure
2.6(b) shows similar behaviour although due to edge effects the equivalent kernel
is truncated relative to that in Figure 2.6(a). In Figure 2.6(c) we see that at
higher noise levels the negative sidelobes are reduced and the width of the
equivalent kernel is similar to the original kernel. Also note that the overall
height of the equivalent kernel in (c) is reduced compared to that in (a) and

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.7 Incorporating Explicit Basis Functions 27

(b)—it averages over a wider area. The more oscillatory equivalent kernel for
lower noise levels can be understood in terms of the eigenanalysis above; at
higher noise levels only the large λ (slowly varying) components of y remain,
while for smaller noise levels the more oscillatory components are also retained.

In Figure 2.6(d) we have plotted the equivalent kernel for n = 10 and n =
250 datapoints in [0, 1]; notice how the width of the equivalent kernel decreases
as n increases. We discuss this behaviour further in section 7.1.

The plots of equivalent kernels in Figure 2.6 were made by using a dense
grid of ngrid points on [0, 1] and then computing the smoother matrix K(K +
σ2

gridI)
−1. Each row of this matrix is the equivalent kernel at the appropriate

location. However, in order to get the scaling right one has to set σ2
grid =

σ2
nngrid/n; for ngrid > n this means that the effective variance at each of the
ngrid points is larger, but as there are correspondingly more points this effect
cancels out. This can be understood by imagining the situation if there were
ngrid/n independent Gaussian observations with variance σ2

grid at a single x-
position; this would be equivalent to one Gaussian observation with variance
σ2

n. In effect the n observations have been smoothed out uniformly along the
interval. The form of the equivalent kernel can be obtained analytically if we
go to the continuum limit and look to smooth a noisy function. The relevant
theory and some example equivalent kernels are given in section 7.1.

2.7 Incorporating Explicit Basis Functions ∗

It is common but by no means necessary to consider GPs with a zero mean func-
tion. Note that this is not necessarily a drastic limitation, since the mean of the
posterior process is not confined to be zero. Yet there are several reasons why
one might wish to explicitly model a mean function, including interpretability
of the model, convenience of expressing prior information and a number of an-
alytical limits which we will need in subsequent chapters. The use of explicit
basis functions is a way to specify a non-zero mean over functions, but as we
will see in this section, one can also use them to achieve other interesting effects.

Using a fixed (deterministic) mean function m(x) is trivial: Simply apply fixed mean function

the usual zero mean GP to the difference between the observations and the
fixed mean function. With

f(x) ∼ GP
(
m(x), k(x,x′)

)
, (2.37)

the predictive mean becomes

f̄∗ = m(X∗) +K(X∗, X)K−1
y (y −m(X)), (2.38)

where Ky = K + σ2
nI, and the predictive variance remains unchanged from

eq. (2.24).

However, in practice it can often be difficult to specify a fixed mean function.
In many cases it may be more convenient to specify a few fixed basis functions,

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

28 Regression

whose coefficients, β, are to be inferred from the data. Considerstochastic mean
function

g(x) = f(x) + h(x)>β, where f(x) ∼ GP
(
0, k(x,x′)

)
, (2.39)

here f(x) is a zero mean GP, h(x) are a set of fixed basis functions, and β are
additional parameters. This formulation expresses that the data is close to a
global linear model with the residuals being modelled by a GP. This idea was
explored explicitly as early as 1975 by Blight and Ott [1975], who used the GP
to model the residuals from a polynomial regression, i.e. h(x) = (1, x, x2, . . .).polynomial regression

When fitting the model, one could optimize over the parameters β jointly with
the hyperparameters of the covariance function. Alternatively, if we take the
prior on β to be Gaussian, β ∼ N (b, B), we can also integrate out these
parameters. Following O’Hagan [1978] we obtain another GP

g(x) ∼ GP
(
h(x)>b, k(x,x′) + h(x)>Bh(x′)

)
, (2.40)

now with an added contribution in the covariance function caused by the un-
certainty in the parameters of the mean. Predictions are made by plugging
the mean and covariance functions of g(x) into eq. (2.39) and eq. (2.24). After
rearranging, we obtain

ḡ(X∗) = H>
∗ β̄ +K>

∗ K
−1
y (y −H>β̄) = f̄(X∗) +R>β̄,

cov(g∗) = cov(f∗) +R>(B−1 +HK−1
y H>)−1R,

(2.41)

where the H matrix collects the h(x) vectors for all training (and H∗ all test)
cases, β̄ = (B−1 +HK−1

y H>)−1(HK−1
y y + B−1b), and R = H∗ −HK−1

y K∗.
Notice the nice interpretation of the mean expression, eq. (2.41) top line: β̄ is
the mean of the global linear model parameters, being a compromise between
the data term and prior, and the predictive mean is simply the mean linear
output plus what the GP model predicts from the residuals. The covariance is
the sum of the usual covariance term and a new non-negative contribution.

Exploring the limit of the above expressions as the prior on the β param-
eter becomes vague, B−1 → O (where O is the matrix of zeros), we obtain a
predictive distribution which is independent of b

ḡ(X∗) = f̄(X∗) +R>β̄,

cov(g∗) = cov(f∗) +R>(HK−1
y H>)−1R,

(2.42)

where the limiting β̄ = (HK−1
y H>)−1HK−1

y y. Notice that predictions under
the limit B−1 → O should not be implemented näıvely by plugging the modified
covariance function from eq. (2.40) into the standard prediction equations, since
the entries of the covariance function tend to infinity, thus making it unsuitable
for numerical implementation. Instead eq. (2.42) must be used. Even if the
non-limiting case is of interest, eq. (2.41) is numerically preferable to a direct
implementation based on eq. (2.40), since the global linear part will often add
some very large eigenvalues to the covariance matrix, affecting its condition
number.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.8 History and Related Work 29

2.7.1 Marginal Likelihood

In this short section we briefly discuss the marginal likelihood for the model
with a Gaussian prior β ∼ N (b, B) on the explicit parameters from eq. (2.40),
as this will be useful later, particularly in section 6.3.1. We can express the
marginal likelihood from eq. (2.30) as

log p(y|X,b, B) = − 1
2 (H>b− y)>(Ky +H>BH)−1(H>b− y)

− 1
2 log |Ky +H>BH| − n

2 log 2π,
(2.43)

where we have included the explicit mean. We are interested in exploring the
limit where B−1 → O, i.e. when the prior is vague. In this limit the mean of the
prior is irrelevant (as was the case in eq. (2.42)), so without loss of generality
(for the limiting case) we assume for now that the mean is zero, b = 0, giving

log p(y|X,b=0, B) = − 1
2y

>K−1
y y + 1

2y
>Cy

− 1
2 log |Ky| − 1

2 log |B| − 1
2 log |A| − n

2 log 2π,
(2.44)

where A = B−1 + HK−1
y H> and C = K−1

y H>A−1HK−1
y and we have used

the matrix inversion lemma, eq. (A.9) and eq. (A.10).

We now explore the behaviour of the log marginal likelihood in the limit of
vague priors on β. In this limit the variances of the Gaussian in the directions
spanned by columns of H> will become infinite, and it is clear that this will
require special treatment. The log marginal likelihood consists of three terms:
a quadratic form in y, a log determinant term, and a term involving log 2π.
Performing an eigendecomposition of the covariance matrix we see that the
contributions to quadratic form term from the infinite-variance directions will
be zero. However, the log determinant term will tend to minus infinity. The
standard solution [Wahba, 1985, Ansley and Kohn, 1985] in this case is to
project y onto the directions orthogonal to the span of H> and compute the
marginal likelihood in this subspace. Let the rank of H> be m. Then as
shown in Ansley and Kohn [1985] this means that we must discard the terms
− 1

2 log |B| − m
2 log 2π from eq. (2.44) to give

log p(y|X) = − 1
2y

>K−1
y y + 1

2y
>Cy − 1

2 log |Ky| − 1
2 log |A| − n−m

2 log 2π,
(2.45)

where A = HK−1
y H> and C = K−1

y H>A−1HK−1
y .

2.8 History and Related Work

Prediction with Gaussian processes is certainly not a very recent topic, espe-
cially for time series analysis; the basic theory goes back at least as far as the time series

work of Wiener [1949] and Kolmogorov [1941] in the 1940’s. Indeed Lauritzen
[1981] discusses relevant work by the Danish astronomer T. N. Thiele dating
from 1880.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

30 Regression

Gaussian process prediction is also well known in the geostatistics field (see,geostatistics

e.g. Matheron, 1973; Journel and Huijbregts, 1978) where it is known as krig-
ing ,17 and in meteorology [Thompson, 1956, Daley, 1991] although this litera-kriging

ture naturally has focussed mostly on two- and three-dimensional input spaces.
Whittle [1963, sec. 5.4] also suggests the use of such methods for spatial pre-
diction. Ripley [1981] and Cressie [1993] provide useful overviews of Gaussian
process prediction in spatial statistics.

Gradually it was realized that Gaussian process prediction could be used in
a general regression context. For example O’Hagan [1978] presents the general
theory as given in our equations 2.23 and 2.24, and applies it to a number of
one-dimensional regression problems. Sacks et al. [1989] describe GPR in the
context of computer experiments (where the observations y are noise free) andcomputer experiments

discuss a number of interesting directions such as the optimization of parameters
in the covariance function (see our chapter 5) and experimental design (i.e. the
choice of x-points that provide most information on f). The authors describe
a number of computer simulations that were modelled, including an example
where the response variable was the clock asynchronization in a circuit and the
inputs were six transistor widths. Santner et al. [2003] is a recent book on the
use of GPs for the design and analysis of computer experiments.

Williams and Rasmussen [1996] described Gaussian process regression inmachine learning

a machine learning context, and described optimization of the parameters in
the covariance function, see also Rasmussen [1996]. They were inspired to use
Gaussian process by the connection to infinite neural networks as described in
section 4.2.3 and in Neal [1996]. The “kernelization” of linear ridge regression
described above is also known as kernel ridge regression see e.g. Saunders et al.
[1998].

Relationships between Gaussian process prediction and regularization the-
ory, splines, support vector machines (SVMs) and relevance vector machines
(RVMs) are discussed in chapter 6.

2.9 Exercises

1. Replicate the generation of random functions from Figure 2.2. Use a
regular (or random) grid of scalar inputs and the covariance function from
eq. (2.16). Hints on how to generate random samples from multi-variate
Gaussian distributions are given in section A.2. Invent some training
data points, and make random draws from the resulting GP posterior
using eq. (2.19).

2. In eq. (2.11) we saw that the predictive variance at x∗ under the feature
space regression model was var(f(x∗)) = φ(x∗)>A−1φ(x∗). Show that
cov(f(x∗), f(x′∗)) = φ(x∗)>A−1φ(x′∗). Check that this is compatible with
the expression given in eq. (2.24).

17Matheron named the method after the South African mining engineer D. G. Krige.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

2.9 Exercises 31

3. The Wiener process is defined for x ≥ 0 and has f(0) = 0. (See sec-
tion B.2.1 for further details.) It has mean zero and a non-stationary
covariance function k(x, x′) = min(x, x′). If we condition on the Wiener
process passing through f(1) = 0 we obtain a process known as the Brow-
nian bridge (or tied-down Wiener process). Show that this process has
covariance k(x, x′) = min(x, x′)−xx′ for 0 ≤ x, x′ ≤ 1 and mean 0. Write
a computer program to draw samples from this process at a finite grid of
x points in [0, 1].

4. Let varn(f(x∗)) be the predictive variance of a Gaussian process regres-
sion model at x∗ given a dataset of size n. The corresponding predictive
variance using a dataset of only the first n − 1 training points is de-
noted varn−1(f(x∗)). Show that varn(f(x∗)) ≤ varn−1(f(x∗)), i.e. that
the predictive variance at x∗ cannot increase as more training data is ob-
tained. One way to approach this problem is to use the partitioned matrix
equations given in section A.3 to decompose varn(f(x∗)) = k(x∗,x∗) −
k>∗ (K+σ2

nI)
−1k∗. An alternative information theoretic argument is given

in Williams and Vivarelli [2000]. Note that while this conclusion is true
for Gaussian process priors and Gaussian noise models it does not hold
generally, see Barber and Saad [1996].

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Chapter 3

Classification

In chapter 2 we have considered regression problems, where the targets are
real valued. Another important class of problems is classification1 problems,
where we wish to assign an input pattern x to one of C classes, C1, . . . , CC .
Practical examples of classification problems are handwritten digit recognition
(where we wish to classify a digitized image of a handwritten digit into one of
ten classes 0-9), and the classification of objects detected in astronomical sky
surveys into stars or galaxies. (Information on the distribution of galaxies in
the universe is important for theories of the early universe.) These examples
nicely illustrate that classification problems can either be binary (or two-class, binary, multi-class

C = 2) or multi-class (C > 2).

We will focus attention on probabilistic classification, where test predictions probabilistic
classificationtake the form of class probabilities; this contrasts with methods which provide

only a guess at the class label, and this distinction is analogous to the difference
between predictive distributions and point predictions in the regression setting.
Since generalization to test cases inherently involves some level of uncertainty,
it seems natural to attempt to make predictions in a way that reflects these
uncertainties. In a practical application one may well seek a class guess, which
can be obtained as the solution to a decision problem, involving the predictive
probabilities as well as a specification of the consequences of making specific
predictions (the loss function).

Both classification and regression can be viewed as function approximation
problems. Unfortunately, the solution of classification problems using Gaussian
processes is rather more demanding than for the regression problems considered
in chapter 2. This is because we assumed in the previous chapter that the
likelihood function was Gaussian; a Gaussian process prior combined with a
Gaussian likelihood gives rise to a posterior Gaussian process over functions,
and everything remains analytically tractable. For classification models, where
the targets are discrete class labels, the Gaussian likelihood is inappropriate;2 non-Gaussian likelihood

1In the statistics literature classification is often called discrimination.
2One may choose to ignore the discreteness of the target values, and use a regression

treatment, where all targets happen to be say ±1 for binary classification. This is known as

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

34 Classification

in this chapter we treat methods of approximate inference for classification,
where exact inference is not feasible.3

Section 3.1 provides a general discussion of classification problems, and de-
scribes the generative and discriminative approaches to these problems. In
section 2.1 we saw how Gaussian process regression (GPR) can be obtained
by generalizing linear regression. In section 3.2 we describe an analogue of
linear regression in the classification case, logistic regression. In section 3.3
logistic regression is generalized to yield Gaussian process classification (GPC)
using again the ideas behind the generalization of linear regression to GPR.
For GPR the combination of a GP prior with a Gaussian likelihood gives rise
to a posterior which is again a Gaussian process. In the classification case the
likelihood is non-Gaussian but the posterior process can be approximated by a
GP. The Laplace approximation for GPC is described in section 3.4 (for binary
classification) and in section 3.5 (for multi-class classification), and the expecta-
tion propagation algorithm (for binary classification) is described in section 3.6.
Both of these methods make use of a Gaussian approximation to the posterior.
Experimental results for GPC are given in section 3.7, and a discussion of these
results is provided in section 3.8.

3.1 Classification Problems

The natural starting point for discussing approaches to classification is the
joint probability p(y,x), where y denotes the class label. Using Bayes’ theorem
this joint probability can be decomposed either as p(y)p(x|y) or as p(x)p(y|x).
This gives rise to two different approaches to classification problems. The first,
which we call the generative approach, models the class-conditional distribu-generative approach

tions p(x|y) for y = C1, . . . , CC and also the prior probabilities of each class,
and then computes the posterior probability for each class using

p(y|x) =
p(y)p(x|y)∑C

c=1 p(Cc)p(x|Cc)
. (3.1)

The alternative approach, which we call the discriminative approach, focussesdiscriminative approach

on modelling p(y|x) directly. Dawid [1976] calls the generative and discrimina-
tive approaches the sampling and diagnostic paradigms, respectively.

To turn both the generative and discriminative approaches into practical
methods we will need to create models for either p(x|y), or p(y|x) respectively.4

These could either be of parametric form, or non-parametric models such as
those based on nearest neighbours. For the generative case a simple, com-generative model

example
least-squares classification, see section 6.5.

3Note, that the important distinction is between Gaussian and non-Gaussian likelihoods;
regression with a non-Gaussian likelihood requires a similar treatment, but since classification
defines an important conceptual and application area, we have chosen to treat it in a separate
chapter; for non-Gaussian likelihoods in general, see section 9.3.

4For the generative approach inference for p(y) is generally straightforward, being esti-
mation of a binomial probability in the binary case, or a multinomial probability in the
multi-class case.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.1 Classification Problems 35

mon choice would be to model the class-conditional densities with Gaussians:
p(x|Cc) = N (µc,Σc). A Bayesian treatment can be obtained by placing appro-
priate priors on the mean and covariance of each of the Gaussians. However,
note that this Gaussian model makes a strong assumption on the form of class-
conditional density and if this is inappropriate the model may perform poorly.

For the binary discriminative case one simple idea is to turn the output of a discriminative model
exampleregression model into a class probability using a response function (the inverse

of a link function), which “squashes” its argument, which can lie in the domain
(−∞,∞), into the range [0, 1], guaranteeing a valid probabilistic interpretation.

One example is the linear logistic regression model

p(C1|x) = λ(x>w), where λ(z) =
1

1 + exp(−z)
, (3.2)

which combines the linear model with the logistic response function. Another response function

common choice of response function is the cumulative density function of a
standard normal distribution Φ(z) =

∫ z

−∞N (x|0, 1)dx. This approach is known
as probit regression. Just as we gave a Bayesian approach to linear regression in probit regression

chapter 2 we can take a parallel approach to logistic regression, as discussed in
section 3.2. As in the regression case, this model is an important step towards
the Gaussian process classifier.

Given that there are the generative and discriminative approaches, which generative or
discriminative?one should we prefer? This is perhaps the biggest question in classification,

and we do not believe that there is a right answer, as both ways of writing the
joint p(y,x) are correct. However, it is possible to identify some strengths and
weaknesses of the two approaches. The discriminative approach is appealing
in that it is directly modelling what we want, p(y|x). Also, density estimation
for the class-conditional distributions is a hard problem, particularly when x is
high dimensional, so if we are just interested in classification then the generative
approach may mean that we are trying to solve a harder problem than we need
to. However, to deal with missing input values, outliers and unlabelled data missing values

points in a principled fashion it is very helpful to have access to p(x), and
this can be obtained from marginalizing out the class label y from the joint
as p(x) =

∑
y p(y)p(x|y) in the generative approach. A further factor in the

choice of a generative or discriminative approach could also be which one is
most conducive to the incorporation of any prior information which is available.
See Ripley [1996, sec. 2.1] for further discussion of these issues. The Gaussian
process classifiers developed in this chapter are discriminative.

3.1.1 Decision Theory for Classification

The classifiers described above provide predictive probabilities p(y∗|x∗) for a
test input x∗. However, sometimes one actually needs to make a decision and
to do this we need to consider decision theory. Decision theory for the regres-
sion problem was considered in section 2.4; here we discuss decision theory for
classification problems. A comprehensive treatment of decision theory can be
found in Berger [1985].

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

36 Classification

Let L(c, c′) be the loss incurred by making decision c′ if the true class is Cc.
Usually L(c, c) = 0 for all c. The expected loss5 (or risk) of taking decision c′loss, risk

given x is RL(c′|x) =
∑

c L(c, c′)p(Cc|x) and the optimal decision c∗ is the one
that minimizes RL(c′|x). One common choice of loss function is the zero-one
loss, where a penalty of one unit is paid for an incorrect classification, and 0zero-one loss

for a correct one. In this case the optimal decision rule is to choose the class Cc
that maximizes6 p(Cc|x), as this minimizes the expected error at x. However,
the zero-one loss is not always appropriate. A classic example of this is theasymmetric loss

difference in loss of failing to spot a disease when carrying out a medical test
compared to the cost of a false positive on the test, so that L(c, c′) 6= L(c′, c).

The optimal classifier (using zero-one loss) is known as the Bayes classi-Bayes classifier

fier. By this construction the feature space is divided into decision regions
R1, . . . ,RC such that a pattern falling in decision region Rc is assigned to classdecision regions

Cc. (There can be more than one decision region corresponding to a single class.)
The boundaries between the decision regions are known as decision surfaces or
decision boundaries.

One would expect misclassification errors to occur in regions where the max-
imum class probability maxj p(Cj |x) is relatively low. This could be due to
either a region of strong overlap between classes, or lack of training examples
within this region. Thus one sensible strategy is to add a reject option so thatreject option

if maxj p(Cj |x) ≥ θ for a threshold θ in (0, 1) then we go ahead and classify
the pattern, otherwise we reject it and leave the classification task to a more
sophisticated system. For multi-class classification we could alternatively re-
quire the gap between the most probable and the second most probable class to
exceed θ, and otherwise reject. As θ is varied from 0 to 1 one obtains an error-
reject curve, plotting the percentage of patterns classified incorrectly against
the percentage rejected. Typically the error rate will fall as the rejection rate
increases. Hansen et al. [1997] provide an analysis of the error-reject trade-off.

We have focused above on the probabilistic approach to classification, which
involves a two-stage approach of first computing a posterior distribution over
functions and then combining this with the loss function to produce a decision.
However, it is worth noting that some authors argue that if our goal is to
eventually make a decision then we should aim to approximate the classification
function that minimizes the risk (expected loss), which is defined asrisk minimization

RL(c) =
∫
L
(
y, c(x)

)
p(y,x) dydx, (3.3)

where p(y,x) is the joint distribution of inputs and targets and c(x) is a clas-
sification function that assigns an input pattern x to one of C classes (see
e.g. Vapnik [1995, ch. 1]). As p(y,x) is unknown, in this approach one often
then seeks to minimize an objective function which includes the empirical risk∑n

i=1 L(yi, c(xi)) as well as a regularization term. While this is a reasonable

5In Economics one usually talks of maximizing expected utility rather than minimizing
expected loss; loss is negative utility. This suggests that statisticians are pessimists while
economists are optimists.

6If more than one class has equal posterior probability then ties can be broken arbitrarily.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.2 Linear Models for Classification 37

method, we note that the probabilistic approach allows the same inference stage
to be re-used with different loss functions, it can help us to incorporate prior
knowledge on the function and/or noise model, and has the advantage of giving
probabilistic predictions which can be helpful e.g. for the reject option.

3.2 Linear Models for Classification

In this section we briefly review linear models for binary classification, which
form the foundation of Gaussian process classification models in the next sec-
tion. We follow the SVM literature and use the labels y = +1 and y = −1 to
distinguish the two classes, although for the multi-class case in section 3.5 we
use 0/1 labels. The likelihood is

p(y=+1|x,w) = σ(x>w), (3.4)

given the weight vector w and σ(z) can be any sigmoid7 function. When using
the logistic, σ(z) = λ(z) from eq. (3.2), the model is usually called simply logistic linear logistic regression

regression, but to emphasize the parallels to linear regression we prefer the term
linear logistic regression. When using the cumulative Gaussian σ(z) = Φ(z),
we call the model linear probit regression. linear probit regression

As the probability of the two classes must sum to 1, we have p(y=−1|x,w) =
1 − p(y = +1|x,w). Thus for a data point (xi, yi) the likelihood is given by
σ(x>i w) if yi = +1, and 1 − σ(x>i w) if yi = −1. For symmetric likelihood
functions, such as the logistic or probit where σ(−z) = 1 − σ(z), this can be
written more concisely as concise notation

p(yi|xi,w) = σ(yifi), (3.5)

where fi , f(xi) = x>i w. Defining the logit transformation as logit(x) = logit

log
(
p(y=+1|x)/p(y=−1|x)

)
we see that the logistic regression model can be

written as logit(x) = x>w. The logit(x) function is also called the log odds log odds ratio

ratio. Generalized linear modelling [McCullagh and Nelder, 1983] deals with
the issue of extending linear models to non-Gaussian data scenarios; the logit
transformation is the canonical link function for binary data and this choice
simplifies the algebra and algorithms.

Given a dataset D = {(xi, yi)|i = 1, . . . , n}, we assume that the labels are
generated independently, conditional on f(x). Using the same Gaussian prior
w ∼ N (0, Σp) as for regression in eq. (2.4) we then obtain the un-normalized
log posterior

log p(w|X,y) c= −1
2
w>Σ−1

p w +
n∑

i=1

log σ(yifi). (3.6)

In the linear regression case with Gaussian noise the posterior was Gaussian
with mean and covariance as given in eq. (2.8). For classification the posterior

7A sigmoid function is a monotonically increasing function mapping from R to [0, 1]. It
derives its name from being shaped like a letter S.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

38 Classification

does not have a simple analytic form. However, it is easy to show that for
some sigmoid functions, such as the logistic and cumulative Gaussian, the log
likelihood is a concave function of w for fixed D. As the quadratic penalty onconcavity

w is also concave then the log posterior is a concave function, which means
that it is relatively easy to find its unique maximum. The concavity can also beunique maximum

derived from the fact that the Hessian of log p(w|X,y) is negative definite (see
section A.9 for further details). The standard algorithm for finding the maxi-
mum is Newton’s method, which in this context is usually called the iteratively
reweighted least squares (IRLS) algorithm, as described e.g. in McCullagh andIRLS algorithm

Nelder [1983]. However, note that Minka [2003] provides evidence that other
optimization methods (e.g. conjugate gradient ascent) may be faster than IRLS.

Notice that a maximum likelihood treatment (corresponding to an unpe-properties of maximum
likelihood nalized version of eq. (3.6)) may result in some undesirable outcomes. If the

dataset is linearly separable (i.e. if there exists a hyperplane which separates the
positive and negative examples) then maximizing the (unpenalized) likelihood
will cause |w| to tend to infinity, However, this will still give predictions in [0, 1]
for p(y = +1|x,w), although these predictions will be “hard” (i.e. zero or one).
If the problem is ill-conditioned, e.g. due to duplicate (or linearly dependent)
input dimensions, there will be no unique solution.

As an example, consider linear logistic regression in the case where x-space
is two dimensional and there is no bias weight so that w is also two-dimensional.
The prior in weight space is Gaussian and for simplicity we have set Σp = I.
Contours of the prior p(w) are illustrated in Figure 3.1(a). If we have a data set
D as shown in Figure 3.1(b) then this induces a posterior distribution in weight
space as shown in Figure 3.1(c). Notice that the posterior is non-Gaussian
and unimodal, as expected. The dataset is not linearly separable but a weight
vector in the direction (1, 1)> is clearly a reasonable choice, as the posterior
distribution shows. To make predictions based the training set D for a testpredictions

point x∗ we have

p(y∗=+1|x∗,D) =
∫
p(y∗=+1|w,x∗)p(w|D) dw, (3.7)

integrating the prediction p(y∗=+1|w,x∗) = σ(x>∗ w) over the posterior distri-
bution of weights. This leads to contours of the predictive distribution as shown
in Figure 3.1(d). Notice how the contours are bent, reflecting the integration
of many different but plausible w’s.

In the multi-class case we use the multiple logistic (or softmax) functionsoftmax
multiple logistic

p(y = Cc|x,W) =
exp(x>wc)∑
c′ exp(x>wc′)

, (3.8)

where wc is the weight vector for class c, and all weight vectors are col-
lected into the matrix W . The corresponding log likelihood is of the form∑n

i=1

∑C
c=1 δc,yi [x

>
i wc − log(

∑
c′ exp(x>i wc′))]. As in the binary case the log

likelihood is a concave function of W .

It is interesting to note that in a generative approach where the class-
conditional distributions p(x|y) are Gaussian with the same covariance matrix,

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.3 Gaussian Process Classification 39

−2 −1 0 1 2
−2

−1

0

1

2

w
1

w
2

−5 0 5

−5

0

5

x
1

x 2

(a) (b)

−2 −1 0 1 2
−2

−1

0

1

2

w
1

w
2

−5 0 5

−5

0

5

x
1

x 2

0.1

0.5

0.9

(c) (d)

Figure 3.1: Linear logistic regression: Panel (a) shows contours of the prior distri-
bution p(w) = N (0, I). Panel (b) shows the dataset, with circles indicating class +1
and crosses denoting class −1. Panel (c) shows contours of the posterior distribution
p(w|D). Panel (d) shows contours of the predictive distribution p(y∗=+1|x∗).

p(y|x) has the form given by eq. (3.4) and eq. (3.8) for the two- and multi-class
cases respectively (when the constant function 1 is included in x).

3.3 Gaussian Process Classification

For binary classification the basic idea behind Gaussian process prediction
is very simple—we place a GP prior over the latent function f(x) and then latent function

“squash” this through the logistic function to obtain a prior on π(x) , p(y=
+1|x) = σ(f(x)). Note that π is a deterministic function of f , and since f
is stochastic, so is π. This construction is illustrated in Figure 3.2 for a one-
dimensional input space. It is a natural generalization of the linear logistic

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

40 Classification

−4

−2

0

2

4

input, x

la
te

nt
 fu

nc
tio

n,
 f(

x)

0

1

input, x

cl
as

s
pr

ob
ab

ili
ty

, π
(x

)

(a) (b)

Figure 3.2: Panel (a) shows a sample latent function f(x) drawn from a Gaussian
process as a function of x. Panel (b) shows the result of squashing this sample func-
tion through the logistic logit function, λ(z) = (1 + exp(−z))−1 to obtain the class
probability π(x) = λ(f(x)).

regression model and parallels the development from linear regression to GP
regression that we explored in section 2.1. Specifically, we replace the linear
f(x) function from the linear logistic model in eq. (3.6) by a Gaussian process,
and correspondingly the Gaussian prior on the weights by a GP prior.

The latent function f plays the rôle of a nuisance function: we do notnuisance function

observe values of f itself (we observe only the inputs X and the class labels y)
and we are not particularly interested in the values of f , but rather in π, in
particular for test cases π(x∗). The purpose of f is solely to allow a convenient
formulation of the model, and the computational goal pursued in the coming
sections will be to remove (integrate out) f .

We have tacitly assumed that the latent Gaussian process is noise-free, andnoise-free latent process

combined it with smooth likelihood functions, such as the logistic or probit.
However, one can equivalently think of adding independent noise to the latent
process in combination with a step-function likelihood. In particular, assuming
Gaussian noise and a step-function likelihood is exactly equivalent to a noise-
free8 latent process and probit likelihood, see exercise 3.10.1.

Inference is naturally divided into two steps: first computing the distribution
of the latent variable corresponding to a test case

p(f∗|X,y,x∗) =
∫
p(f∗|X,x∗, f)p(f |X,y) df , (3.9)

where p(f |X,y) = p(y|f)p(f |X)/p(y|X) is the posterior over the latent vari-
ables, and subsequently using this distribution over the latent f∗ to produce a
probabilistic prediction

π̄∗ , p(y∗=+1|X,y,x∗) =
∫
σ(f∗)p(f∗|X,y,x∗) df∗. (3.10)

8This equivalence explains why no numerical problems arise from considering a noise-free
process if care is taken with the implementation, see also comment at the end of section 3.4.3.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.4 The Laplace Approximation for the Binary GP Classifier 41

In the regression case (with Gaussian likelihood) computation of predictions was
straightforward as the relevant integrals were Gaussian and could be computed
analytically. In classification the non-Gaussian likelihood in eq. (3.9) makes
the integral analytically intractable. Similarly, eq. (3.10) can be intractable
analytically for certain sigmoid functions, although in the binary case it is
only a one-dimensional integral so simple numerical techniques are generally
adequate.

Thus we need to use either analytic approximations of integrals, or solutions
based on Monte Carlo sampling. In the coming sections, we describe two ana-
lytic approximations which both approximate the non-Gaussian joint posterior
with a Gaussian one: the first is the straightforward Laplace approximation
method [Williams and Barber, 1998], and the second is the more sophisticated
expectation propagation (EP) method due to Minka [2001]. (The cavity TAP ap-
proximation of Opper and Winther [2000] is closely related to the EP method.)
A number of other approximations have also been suggested, see e.g. Gibbs and
MacKay [2000], Jaakkola and Haussler [1999], and Seeger [2000]. Neal [1999]
describes the use of Markov chain Monte Carlo (MCMC) approximations. All
of these methods will typically scale as O(n3); for large datasets there has been
much work on further approximations to reduce computation time, as discussed
in chapter 8.

The Laplace approximation for the binary case is described in section 3.4,
and for the multi-class case in section 3.5. The EP method for binary clas-
sification is described in section 3.6. Relationships between Gaussian process
classifiers and other techniques such as spline classifiers, support vector ma-
chines and least-squares classification are discussed in sections 6.3, 6.4 and 6.5
respectively.

3.4 The Laplace Approximation for the Binary
GP Classifier

Laplace’s method utilizes a Gaussian approximation q(f |X,y) to the poste-
rior p(f |X,y) in the integral (3.9). Doing a second order Taylor expansion
of log p(f |X,y) around the maximum of the posterior, we obtain a Gaussian
approximation

q(f |X,y) = N (f |f̂ , A−1) ∝ exp
(
− 1

2 (f − f̂)>A(f − f̂)
)
, (3.11)

where f̂ = argmaxf p(f |X,y) and A = −∇∇ log p(f |X,y)|f=f̂ is the Hessian of
the negative log posterior at that point.

The structure of the rest of this section is as follows: In section 3.4.1 we
describe how to find f̂ and A. Section 3.4.2 explains how to make predictions
having obtained q(f |y), and section 3.4.3 gives more implementation details
for the Laplace GP classifier. The Laplace approximation for the marginal
likelihood is described in section 3.4.4.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

42 Classification

−2 0 2

−3

−2

−1

0

1

latent times target, z
i
=y

i
f
i

lo
g

lik
el

ih
oo

d,
 lo

g
p(

y i|f i)

log likelihood
1st derivative
2nd derivative

−2 0 2

−6

−4

−2

0

2

latent times target, z
i
=y

i
f
i

lo
g

lik
el

ih
oo

d,
 lo

g
p(

y i|f i)

log likelihood
1st derivative
2nd derivative

(a), logistic (b), probit

Figure 3.3: The log likelihood and its derivatives for a single case as a function of
zi = yifi, for (a) the logistic, and (b) the cumulative Gaussian likelihood. The two
likelihood functions are fairly similar, the main qualitative difference being that for
large negative arguments the log logistic behaves linearly whereas the log cumulative
Gaussian has a quadratic penalty. Both likelihoods are log concave.

3.4.1 Posterior

By Bayes’ rule the posterior over the latent variables is given by p(f |X,y) =
p(y|f)p(f |X)/p(y|X), but as p(y|X) is independent of f , we need only consider
the un-normalized posterior when maximizing w.r.t. f . Taking the logarithmun-normalized posterior

and introducing expression eq. (2.29) for the GP prior gives

Ψ(f) , log p(y|f) + log p(f |X)

= log p(y|f)− 1
2
f>K−1f − 1

2
log |K| − n

2
log 2π.

(3.12)

Differentiating eq. (3.12) w.r.t. f we obtain

∇Ψ(f) = ∇ log p(y|f)−K−1f , (3.13)

∇∇Ψ(f) = ∇∇ log p(y|f)−K−1 = −W −K−1, (3.14)

where W , −∇∇ log p(y|f) is diagonal, since the likelihood factorizes over
cases (the distribution for yi depends only on fi, not on fj 6=i). Note, that if the
likelihood p(y|f) is log concave, the diagonal elements of W are non-negative,
and the Hessian in eq. (3.14) is negative definite, so that Ψ(f) is concave and
has a unique maximum (see section A.9 for further details).

There are many possible functional forms of the likelihood, which gives the
target class probability as a function of the latent variable f . Two commonly
used likelihood functions are the logistic, and the cumulative Gaussian, seelog likelihoods

and their derivatives Figure 3.3. The expressions for the log likelihood for these likelihood functions
and their first and second derivatives w.r.t. the latent variable are given in the

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.4 The Laplace Approximation for the Binary GP Classifier 43

following table:

log p(yi|fi)
∂

∂fi
log p(yi|fi)

∂2

∂f2
i

log p(yi|fi)

− log
(
1 + exp(−yifi)

)
ti − πi −πi(1− πi) (3.15)

log Φ(yifi)
yiN (fi)
Φ(yifi)

− N (fi)2

Φ(yifi)2
− yifiN (fi)

Φ(yifi)
(3.16)

where we have defined πi = p(yi = 1|fi) and t = (y + 1)/2. At the maximum
of Ψ(f) we have

∇Ψ = 0 =⇒ f̂ = K
(
∇ log p(y|f̂)

)
, (3.17)

as a self-consistent equation for f̂ (but since ∇ log p(y|f̂) is a non-linear function
of f̂ , eq. (3.17) cannot be solved directly). To find the maximum of Ψ we use
Newton’s method, with the iteration Newton’s method

fnew = f − (∇∇Ψ)−1∇Ψ = f + (K−1 +W)−1(∇ log p(y|f)−K−1f)

= (K−1 +W)−1
(
W f +∇ log p(y|f)

)
. (3.18)

To gain more intuition about this update, let us consider what happens to
datapoints that are well-explained under f so that ∂ log p(yi|fi)/∂fi and Wii

are close to zero for these points. As an approximation, break f into two
subvectors, f1 that corresponds to points that are not well-explained, and f2 to
those that are. Then it is easy to show (see exercise 3.10.4) that

fnew
1 = K11(I11 +W11K11)−1

(
W11f1 +∇ log p(y1|f1)

)
,

fnew
2 = K21K

−1
11 fnew

1 ,
(3.19)

where K21 denotes the n2 × n1 block of K containing the covariance between
the two groups of points, etc. This means that fnew

1 is computed by ignoring intuition on influence of
well-explained pointsentirely the well-explained points, and fnew

2 is predicted from fnew
1 using the

usual GP prediction methods (i.e. treating these points like test points). Of
course, if the predictions of fnew

2 fail to match the targets correctly they would
cease to be well-explained and so be updated on the next iteration.

Having found the maximum posterior f̂ , we can now specify the Laplace
approximation to the posterior as a Gaussian with mean f̂ and covariance matrix
given by the negative inverse Hessian of Ψ from eq. (3.14)

q(f |X,y) = N
(
f̂ , (K−1 +W)−1

)
. (3.20)

One problem with the Laplace approximation is that it is essentially un-
controlled, in that the Hessian (evaluated at f̂) may give a poor approximation
to the true shape of the posterior. The peak could be much broader or nar-
rower than the Hessian indicates, or it could be a skew peak, while the Laplace
approximation assumes it has elliptical contours.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

44 Classification

3.4.2 Predictions

The posterior mean for f∗ under the Laplace approximation can be expressed
by combining the GP predictive mean eq. (2.25) with eq. (3.17) intolatent mean

Eq[f∗|X,y,x∗] = k(x∗)>K−1f̂ = k(x∗)>∇ log p(y|f̂). (3.21)

Compare this with the exact mean, given by Opper and Winther [2000] as

Ep[f∗|X,y,x∗] =
∫

E[f∗|f , X,x∗]p(f |X,y)df (3.22)

=
∫

k(x∗)>K−1f p(f |X,y)df = k(x∗)>K−1E[f |X,y],

where we have used the fact that for a GP E[f∗|f , X,x∗] = k(x∗)>K−1f and
have let E[f |X,y] denote the posterior mean of f given X and y. Notice the
similarity between the middle expression of eq. (3.21) and eq. (3.22), where the
exact (intractable) average E[f |X,y] has been replaced with the modal value
f̂ = Eq[f |X,y].

A simple observation from eq. (3.21) is that positive training examples will
give rise to a positive coefficient for their kernel function (as ∇i log p(yi|fi) > 0sign of kernel

coefficients in this case), while negative examples will give rise to a negative coefficient;
this is analogous to the solution to the support vector machine, see eq. (6.34).
Also note that training points which have ∇i log p(yi|fi) ' 0 (i.e. that are
well-explained under f̂) do not contribute strongly to predictions at novel test
points; this is similar to the behaviour of non-support vectors in the support
vector machine (see section 6.4).

We can also compute Vq[f∗|X,y], the variance of f∗|X,y under the Gaussian
approximation. This comprises of two terms, i.e.

Vq[f∗|X,y,x∗] = Ep(f∗|X,x∗,f)[(f∗ − E[f∗|X,x∗, f])2]
+ Eq(f |X,y)[(E[f∗|X,x∗, f]− E[f∗|X,y,x∗])2].

(3.23)

The first term is due to the variance of f∗ if we condition on a particular value
of f , and is given by k(x∗,x∗) − k(x∗)>K−1k(x∗), cf. eq. (2.19). The second
term in eq. (3.23) is due to the fact that E[f∗|X,x∗, f] = k(x∗)>K−1f depends
on f and thus there is an additional term of k(x∗)>K−1 cov(f |X,y)K−1k(x∗).
Under the Gaussian approximation cov(f |X,y) = (K−1 +W)−1, and thuslatent variance

Vq[f∗|X,y,x∗] = k(x∗,x∗)−k>∗ K
−1k∗ + k>∗ K

−1(K−1 +W)−1K−1k∗

= k(x∗,x∗)−k>∗ (K +W−1)−1k∗, (3.24)

where the last line is obtained using the matrix inversion lemma eq. (A.9).

Given the mean and variance of f∗, we make predictions by computingaveraged predictive
probability

π̄∗ ' Eq[π∗|X,y,x∗] =
∫
σ(f∗)q(f∗|X,y,x∗) df∗, (3.25)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.4 The Laplace Approximation for the Binary GP Classifier 45

where q(f∗|X,y,x∗) is Gaussian with mean and variance given by equations
3.21 and 3.24 respectively. Notice that because of the non-linear form of the
sigmoid the predictive probability from eq. (3.25) is different from the sigmoid
of the expectation of f : π̂∗ = σ(Eq[f∗|y]). We will call the latter the MAP
prediction to distinguish it from the averaged predictions from eq. (3.25). MAP prediction

In fact, as shown in Bishop [1995, sec. 10.3], the predicted test labels identical binary
decisionsgiven by choosing the class of highest probability obtained by averaged and

MAP predictions are identical for binary9 classification. To see this, note
that the decision boundary using the the MAP value Eq[f∗|X,y,x∗] corre-
sponds to σ(Eq[f∗|X,y,x∗]) = 1/2 or Eq[f∗|X,y,x∗] = 0. The decision bound-
ary of the averaged prediction, Eq[π∗|X,y,x∗] = 1/2, also corresponds to
Eq[f∗|X,y,x∗] = 0. This follows from the fact that σ(f∗) − 1/2 is antisym-
metric while q(f∗|X,y,x∗) is symmetric.

Thus if we are concerned only about the most probable classification, it is
not necessary to compute predictions using eq. (3.25). However, as soon as we
also need a confidence in the prediction (e.g. if we are concerned about a reject
option) we need Eq[π∗|X,y,x∗]. If σ(z) is the cumulative Gaussian function
then eq. (3.25) can be computed analytically, as shown in section 3.9. On
the other hand if σ is the logistic function then we need to resort to sampling
methods or analytical approximations to compute this one-dimensional integral.
One attractive method is to note that the logistic function λ(z) is the c.d.f.
(cumulative density function) corresponding to the p.d.f. (probability density
function) p(z) = sech2(z/2)/4; this is known as the logistic or sech-squared
distribution, see Johnson et al. [1995, ch. 23]. Then by approximating p(z) as a
mixture of Gaussians, one can approximate λ(z) by a linear combination of error
functions. This approximation was used by Williams and Barber [1998, app. A]
and Wood and Kohn [1998]. Another approximation suggested in MacKay
[1992d] is π̄∗ ' λ(κ(f∗|y)f̄∗), where κ2(f∗|y) = (1 + πVq[f∗|X,y,x∗]/8)−1.
The effect of the latent predictive variance is, as the approximation suggests,
to “soften” the prediction that would be obtained using the MAP prediction
π̂∗ = λ(f̄∗), i.e. to move it towards 1/2.

3.4.3 Implementation

We give implementations for finding the Laplace approximation in Algorithm
3.1 and for making predictions in Algorithm 3.2. Care is taken to avoid numer-
ically unstable computations while minimizing the computational effort; both
can be achieved simultaneously. It turns out that several of the desired terms
can be expressed in terms of the symmetric positive definite matrix

B = I +W
1
2KW

1
2 , (3.26)

computation of which costs only O(n2), since W is diagonal. The B matrix has
eigenvalues bounded below by 1 and bounded above by 1 + nmaxij(Kij)/4, so
for many covariance functions B is guaranteed to be well-conditioned, and it is

9For multi-class predictions discussed in section 3.5 the situation is more complicated.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

46 Classification

input: K (covariance matrix), y (±1 targets), p(y|f) (likelihood function)
2: f := 0 initialization

repeat Newton iteration
4: W := −∇∇ log p(y|f) eval. W e.g. using eq. (3.15) or (3.16)

L := cholesky(I +W
1
2KW

1
2) B = I +W

1
2KW

1
2

6: b := W f +∇ log p(y|f)
a := b−W 1

2L>\(L\(W 1
2Kb))

}
eq. (3.18) using eq. (3.27)

8: f := Ka
until convergence objective: − 1

2a
>f + log p(y|f)

10: log q(y|X, θ) := − 1
2a
>f + log p(y|f)−

∑
i logLii eq. (3.32)

return: f̂ := f (post. mode), log q(y|X, θ) (approx. log marg. likelihood)

Algorithm 3.1: Mode-finding for binary Laplace GPC. Commonly used convergence
criteria depend on the difference in successive values of the objective function Ψ(f)
from eq. (3.12), the magnitude of the gradient vector∇Ψ(f) from eq. (3.13) and/or the
magnitude of the difference in successive values of f . In a practical implementation
one needs to secure against divergence by checking that each iteration leads to an
increase in the objective (and trying a smaller step size if not). The computational
complexity is dominated by the Cholesky decomposition in line 5 which takes n3/6
operations (times the number of Newton iterations), all other operations are at most
quadratic in n.

thus numerically safe to compute its Cholesky decomposition LL> = B, which
is useful in computing terms involving B−1 and |B|.

The mode-finding procedure uses the Newton iteration given in eq. (3.18),
involving the matrix (K−1+W)−1. Using the matrix inversion lemma eq. (A.9)
we get

(K−1 +W)−1 = K −KW 1
2B−1W

1
2K, (3.27)

where B is given in eq. (3.26). The advantage is that whereas K may have
eigenvalues arbitrarily close to zero (and thus be numerically unstable to invert),
we can safely work with B. In addition, Algorithm 3.1 keeps the vector a =
K−1f in addition to f , as this allows evaluation of the part of the objective
Ψ(f) in eq. (3.12) which depends on f without explicit reference to K−1 (again
to avoid possible numerical problems).

Similarly, for the computation of the predictive variance Vq[f∗|y] from eq. (3.24)
we need to evaluate a quadratic form involving the matrix (K +W−1)−1. Re-
writing this as

(K +W−1)−1 = W
1
2W− 1

2 (K +W−1)−1W− 1
2W

1
2 = W

1
2B−1W

1
2 (3.28)

achieves numerical stability (as opposed to inverting W itself, which may have
arbitrarily small eigenvalues). Thus the predictive variance from eq. (3.24) can
be computed as

Vq[f∗|y] = k(x∗,x∗)− k(x∗)>W
1
2 (LL>)−1W

1
2 k(x∗)

= k(x∗,x∗)− v>v, where v = L\(W 1
2 k(x∗)),

(3.29)

which was also used by Seeger [2003, p. 27].

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.4 The Laplace Approximation for the Binary GP Classifier 47

input: f̂ (mode), X (inputs), y (±1 targets), k (covariance function),
p(y|f) (likelihood function), x∗ test input

2: W := −∇∇ log p(y|f̂)
L := cholesky(I +W

1
2KW

1
2) B = I +W

1
2KW

1
2

4: f̄∗ := k(x∗)>∇ log p(y|f̂) eq. (3.21)
v := L\

(
W

1
2 k(x∗)

)
6: V[f∗] := k(x∗,x∗)− v>v

}
eq. (3.24) using eq. (3.29)

π̄∗ :=
∫
σ(z)N (z|f̄∗,V[f∗])dz eq. (3.25)

8: return: π̄∗ (predictive class probability (for class 1))

Algorithm 3.2: Predictions for binary Laplace GPC. The posterior mode f̂ (which
can be computed using Algorithm 3.1) is input. For multiple test inputs lines 4−7 are
applied to each test input. Computational complexity is n3/6 operations once (line
3) plus n2 operations per test case (line 5). The one-dimensional integral in line 7
can be done analytically for cumulative Gaussian likelihood, otherwise it is computed
using an approximation or numerical quadrature.

In practice we compute the Cholesky decomposition LL> = B during the
Newton steps in Algorithm 3.1, which can be re-used to compute the predictive
variance by doing backsubstitution with L as discussed above. In addition,
L may again be re-used to compute |In + W

1
2KW

1
2 | = |B| (needed for the

computation of the marginal likelihood eq. (3.32)) as log |B| = 2
∑

logLii. To
save computation, one could use an incomplete Cholesky factorization in the incomplete Cholesky

factorizationNewton steps, as suggested by Fine and Scheinberg [2002].

Sometimes it is suggested that it can be useful to replace K by K+εI where
ε is a small constant, to improve the numerical conditioning10 of K. However,
by taking care with the implementation details as above this should not be
necessary.

3.4.4 Marginal Likelihood

It will also be useful (particularly for chapter 5) to compute the Laplace ap-
proximation of the marginal likelihood p(y|X). (For the regression case with
Gaussian noise the marginal likelihood can again be calculated analytically, see
eq. (2.30).) We have

p(y|X) =
∫
p(y|f)p(f |X) df =

∫
exp

(
Ψ(f)

)
df . (3.30)

Using a Taylor expansion of Ψ(f) locally around f̂ we obtain Ψ(f) ' Ψ(f̂) −
1
2 (f− f̂)>A(f− f̂) and thus an approximation q(y|X) to the marginal likelihood
as

p(y|X) ' q(y|X) = exp
(
Ψ(f̂)

) ∫
exp

(
− 1

2 (f − f̂)>A(f − f̂)
)
df . (3.31)

10Neal [1999] refers to this as adding “jitter” in the context of Markov chain Monte Carlo
(MCMC) based inference; in his work the latent variables f are explicitly represented in
the Markov chain which makes addition of jitter difficult to avoid. Within the analytical
approximations of the distribution of f considered here, jitter is unnecessary.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

48 Classification

This Gaussian integral can be evaluated analytically to obtain an approximation
to the log marginal likelihood

log q(y|X,θ) = − 1
2 f̂
>K−1f̂ + log p(y|f̂)− 1

2 log |B|, (3.32)

where |B| = |K| · |K−1 + W | = |In + W
1
2KW

1
2 |, and θ is a vector of hyper-

parameters of the covariance function (which have previously been suppressed
from the notation for brevity).

3.5 Multi-class Laplace Approximation∗

Our presentation follows Williams and Barber [1998]. We first introduce the
vector of latent function values at all n training points and for all C classes

f =
(
f1
1 , . . . , f

1
n, f

2
1 , . . . , f

2
n, . . . , f

C
1 , . . . , f

C
n

)>
. (3.33)

Thus f has length Cn. In the following we will generally refer to quantities
pertaining to a particular class with superscript c, and a particular case by
subscript i (as usual); thus e.g. the vector of C latents for a particular case is
fi. However, as an exception, vectors or matrices formed from the covariance
function for class c will have a subscript c. The prior over f has the form
f ∼ N (0,K). As we have assumed that the C latent processes are uncorrelated,
the covariance matrix K is block diagonal in the matrices K1, . . . ,KC . Each
individual matrix Kc expresses the correlations of the latent function values
within the class c. Note that the covariance functions pertaining to the different
classes can be different. Let y be a vector of the same length as f which for
each i = 1, . . . , n has an entry of 1 for the class which is the label for example
i and 0 for the other C − 1 entries.

Let πc
i denote output of the softmax at training point i, i.e.softmax

p(yc
i |fi) = πc

i =
exp(fc

i)∑
c′ exp(fc′

i)
. (3.34)

Then π is a vector of the same length as f with entries πc
i . The multi-classun-normalized posterior

analogue of eq. (3.12) is the log of the un-normalized posterior

Ψ(f) , − 1
2 f
>K−1f+y>f−

n∑
i=1

log
(C∑

c=1

exp fc
i

)
− 1

2 log |K|− Cn
2 log 2π. (3.35)

As in the binary case we seek the MAP value f̂ of p(f |X,y). By differentiating
eq. (3.35) w.r.t. f we obtain

∇Ψ = −K−1f + y − π. (3.36)

Thus at the maximum we have f̂ = K(y− π̂). Differentiating again, and using

− ∂2

∂f c
i ∂f

c′
i

log
∑

j

exp(f j
i) = πc

i δcc′ + πc
iπ

c′

i , (3.37)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.5 Multi-class Laplace Approximation 49

we obtain11

∇∇Ψ = −K−1 −W, where W , diag(π)−ΠΠ>, (3.38)

where Π is a Cn×nmatrix obtained by stacking vertically the diagonal matrices
diag(πc), and πc is the subvector of π pertaining to class c. As in the binary case
notice that −∇∇Ψ is positive definite, thus Ψ(f) is concave and the maximum
is unique (see also exercise 3.10.2).

As in the binary case we use Newton’s method to search for the mode of Ψ,
giving

fnew = (K−1 +W)−1(W f + y − π). (3.39)

This update if coded näıvely would take O(C3n3) as matrices of size Cn have to
be inverted. However, as described in section 3.5.1, we can utilize the structure
of W to bring down the computational load to O(Cn3).

The Laplace approximation gives us a Gaussian approximation q(f |X,y) to
the posterior p(f |X,y). To make predictions at a test point x∗ we need to com- predictive

distribution for f∗pute the posterior distribution q(f∗|X,y,x∗) where f(x∗) , f∗ = (f1
∗ , . . . , f

C
∗)>.

In general we have

q(f∗|X,y,x∗) =
∫
p(f∗|X,x∗, f)q(f |X,y) df . (3.40)

As p(f∗|X,x∗, f) and q(f |X,y) are both Gaussian, q(f∗|X,y,x∗) will also be
Gaussian and we need only compute its mean and covariance. The predictive
mean for class c is given by

Eq[fc(x∗)|X,y,x∗] = kc(x∗)>K−1
c f̂ c = kc(x∗)>(yc − π̂c), (3.41)

where kc(x∗) is the vector of covariances between the test point and each of
the training points for the cth covariance function, and f̂ c is the subvector of
f̂ pertaining to class c. The last equality comes from using eq. (3.36) at the
maximum f̂ . Note the close correspondence to eq. (3.21). This can be put into
a vector form Eq[f∗|y] = Q>∗ (y − π̂) by defining the Cn× C matrix

Q∗ =


k1(x∗) 0 . . . 0

0 k2(x∗) . . . 0
...

...
. . .

...
0 0 . . . kC(x∗)

 . (3.42)

Using a similar argument to eq. (3.23) we obtain

covq(f∗|X,y,x∗) = Σ +Q>∗ K
−1(K−1 +W)−1K−1Q∗

= diag(k(x∗,x∗))−Q>∗ (K +W−1)−1Q∗,
(3.43)

where Σ is a diagonal C×C matrix with Σcc = kc(x∗,x∗)−k>c (x∗)K−1
c kc(x∗),

and k(x∗,x∗) is a vector of covariances, whose c’th element is kc(x∗,x∗).
11There is a sign error in equation 23 of Williams and Barber [1998] but not in their

implementation.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

50 Classification

input: K (covariance matrix), y (0/1 targets)
2: f := 0 initialization

repeat Newton iteration
4: compute π and Π from f with eq. (3.34) and defn. of Π under eq. (3.38)

for c := 1 . . . C do
6: L := cholesky(In +D

1
2
c KcD

1
2
c)

Ec := D
1
2
c L>\(L\D

1
2
c) E is block diag. D

1
2 (ICn +D

1
2KD

1
2)−1D

1
2

8: zc :=
∑

i logLii compute 1
2 log determinant

end for
10: M := cholesky(

∑
cEc)

b := (D −ΠΠ>)f + y − π b = W f + y − π from eq. (3.39)
12: c := EKb

a := b−c+ERM>\(M\(R>c))

}
eq. (3.39) using eq. (3.45) and (3.47)

14: f := Ka
until convergence objective: − 1

2a
>f + y>f +

∑
i log

(∑
c exp(f i

c)
)

16: log q(y|X, θ) := − 1
2a
>f + y>f +

∑
i log

(∑
c exp(f i

c)
)
−
∑

c zc eq. (3.44)
return: f̂ := f (post. mode), log q(y|X, θ) (approx. log marg. likelihood)

Algorithm 3.3: Mode-finding for multi-class Laplace GPC, where D = diag(π), R
is a matrix of stacked identity matrices and a subscript c on a block diagonal matrix
indicates the n × n submatrix pertaining to class c. The computational complexity
is dominated by the Cholesky decomposition in lines 6 and 10 and the forward and
backward substitutions in line 7 with total complexity O((C + 1)n3) (times the num-
ber of Newton iterations), all other operations are at most O(Cn2) when exploiting
diagonal and block diagonal structures. The memory requirement is O(Cn2). For
comments on convergence criteria for line 15 and avoiding divergence, refer to the
caption of Algorithm 3.1 on page 46.

We now need to consider the predictive distribution q(π∗|y) which is ob-
tained by softmaxing the Gaussian q(f∗|y). In the binary case we saw that the
predicted classification could be obtained by thresholding the mean value of the
Gaussian. In the multi-class case one does need to take the variability around
the mean into account as it can affect the overall classification (see exercise
3.10.3). One simple way (which will be used in Algorithm 3.4) to estimate
the mean prediction Eq[π∗|y] is to draw samples from the Gaussian q(f∗|y),
softmax them and then average.

The Laplace approximation to the marginal likelihood can be obtained inmarginal likelihood

the same way as for the binary case, yielding

log p(y|X,θ) ' log q(y|X,θ) (3.44)

= − 1
2 f̂
>K−1f̂ + y>f̂ −

n∑
i=1

log
(C∑

c=1

exp f̂c
i

)
− 1

2 log |ICn +W
1
2KW

1
2 |.

As for the inversion of K−1 +W , the determinant term can be computed effi-
ciently by exploiting the structure of W , see section 3.5.1.

In this section we have described the Laplace approximation for multi-class
classification. However, there has also been some work on EP-type methods for
the multi-class case, see Seeger and Jordan [2004].

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.5 Multi-class Laplace Approximation 51

input: K (covariance matrix), f̂ (posterior mode), x∗ (test input)
2: compute π and Π from f̂ using eq. (3.34) and defn. of Π under eq. (3.38)

for c := 1 . . . C do
4: L := cholesky(In +D

1
2
c KcD

1
2
c)

Ec := D
1
2
c L>\(L\D

1
2
c) E is block diag. D

1
2 (ICn +D

1
2KD

1
2)−1D

1
2

6: end for
M := cholesky(

∑
cEc)

8: for c := 1 . . . C do
µc
∗ := (yc − πc)>kc

∗ latent test mean from eq. (3.41)
10: b := Eckc

∗
c := Ec(R(M>\(M\(R>b))))

12: for c′ := 1 . . . C do
Σcc′ := c>kc′

∗
14: end for

}
latent test covariance from eq. (3.43)

Σcc := Σcc + kc(x∗,x∗)− b>kc
∗

16: end for
π∗ := 0 initialize Monte Carlo loop to estimate

18: for i := 1 : S do predictive class probabilities using S samples
f∗ ∼ N (µ∗, Σ) sample latent values from joint Gaussian posterior

20: π∗ := π∗ + exp(fc
∗)/
∑

c′ exp(fc′

∗) accumulate probability eq. (3.34)
end for

22: π̄∗ := π∗/S normalize MC estimate of prediction vector
return: Eq(f)[π(f(x∗))|x∗, X,y] := π̄∗ (predicted class probability vector)

Algorithm 3.4: Predictions for multi-class Laplace GPC, where D = diag(π), R is
a matrix of stacked identity matrices and a subscript c on a block diagonal matrix
indicates the n × n submatrix pertaining to class c. The computational complexity
is dominated by the Cholesky decomposition in lines 4 and 7 with a total complexity
O((C + 1)n3), the memory requirement is O(Cn2). For multiple test cases repeat
from line 8 for each test case (in practice, for multiple test cases one may reorder the
computations in lines 8-16 to avoid referring to all Ec matrices repeatedly).

3.5.1 Implementation

The implementation follows closely the implementation for the binary case de-
tailed in section 3.4.3, with the slight complications that K is now a block
diagonal matrix of size Cn × Cn and the W matrix is no longer diagonal, see
eq. (3.38). Care has to be taken to exploit the structure of these matrices to
reduce the computational burden.

The Newton iteration from eq. (3.39) requires the inversion of K−1 + W ,
which we first re-write as

(K−1 +W)−1 = K −K(K +W−1)−1K, (3.45)

using the matrix inversion lemma, eq. (A.9). In the following the inversion of
the above matrix K +W−1 is our main concern. First, however, we apply the

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

52 Classification

matrix inversion lemma, eq. (A.9) to the W matrix:12

W−1 = (D −ΠΠ>)−1 = D−1 −R(I −R>DR)−1R>

= D−1 −RO−1R>,
(3.46)

where D = diag(π), R = D−1Π is a Cn×n matrix of stacked In unit matrices,
we use the fact that π normalizes over classes: R>DR =

∑
cDc = In and O is

the zero matrix. Introducing the above in K +W−1 and applying the matrix
inversion lemma, eq. (A.9) again we have

(K +W−1)−1 = (K +D−1 −RO−1R>)−1 (3.47)

= E − ER(O +R>ER)−1R>E = E − ER(
∑

cEc)−1R>E.

where E = (K +D−1)−1 = D
1
2 (I +D

1
2KD

1
2)−1D

1
2 is a block diagonal matrix

and R>ER =
∑

cEc. The Newton iterations can now be computed by inserting
eq. (3.47) and (3.45) in eq. (3.39), as detailed in Algorithm 3.3. The predictions
use an equivalent route to compute the Gaussian posterior, and the final step
of deriving predictive class probabilities is done by Monte Carlo, as shown in
Algorithm 3.4.

3.6 Expectation Propagation

The expectation propagation (EP) algorithm [Minka, 2001] is a general approxi-
mation tool with a wide range of applications. In this section we present only its
application to the specific case of a GP model for binary classification. We note
that Opper and Winther [2000] presented a similar method for binary GPC
based on the fixed-point equations of the Thouless-Anderson-Palmer (TAP)
type of mean-field approximation from statistical physics. The fixed points for
the two methods are the same, although the precise details of the two algorithms
are different. The EP algorithm naturally lends itself to sparse approximations,
which will not be discussed in detail here, but touched upon in section 8.4.

The object of central importance is the posterior distribution over the latent
variables, p(f |X,y). In the following notation we suppress the explicit depen-
dence on hyperparameters, see section 3.6.2 for their treatment. The posterior
is given by Bayes’ rule, as the product of a normalization term, the prior and
the likelihood

p(f |X,y) =
1
Z
p(f |X)

n∏
i=1

p(yi|fi), (3.48)

where the prior p(f |X) is Gaussian and we have utilized the fact that the likeli-
hood factorizes over the training cases. The normalization term is the marginal
likelihood

Z = p(y|X) =
∫
p(f |X)

n∏
i=1

p(yi|fi) df . (3.49)

12Readers who are disturbed by our sloppy treatment of the inverse of singular matrices
are invited to insert the matrix (1 − ε)In between Π and Π> in eq. (3.46) and verify that
eq. (3.47) coincides with the limit ε → 0.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.6 Expectation Propagation 53

So far, everything is exactly as in the regression case discussed in chapter 2.
However, in the case of classification the likelihood p(yi|fi) is not Gaussian,
a property that was used heavily in arriving at analytical solutions for the
regression framework. In this section we use the probit likelihood (see page 35)
for binary classification

p(yi|fi) = Φ(fiyi), (3.50)

and this makes the posterior in eq. (3.48) analytically intractable. To overcome
this hurdle in the EP framework we approximate the likelihood by a local like-
lihood approximation13 in the form of an un-normalized Gaussian function in
the latent variable fi

p(yi|fi) ' ti(fi|Z̃i, µ̃i, σ̃
2
i) , Z̃iN (fi|µ̃i, σ̃

2
i), (3.51)

which defines the site parameters Z̃i, µ̃i and σ̃2
i . Remember that the notation site parameters

N is used for a normalized Gaussian distribution. Notice that we are approxi-
mating the likelihood, i.e. a probability distribution which normalizes over the
targets yi, by an un-normalized Gaussian distribution over the latent variables
fi. This is reasonable, because we are interested in how the likelihood behaves
as a function of the latent fi. In the regression setting we utilized the Gaussian
shape of the likelihood, but more to the point, the Gaussian distribution for
the outputs yi also implied a Gaussian shape as a function of the latent vari-
able fi. In order to compute the posterior we are of course primarily interested
in how the likelihood behaves as a function of fi.14 The property that the
likelihood should normalize over yi (for any value of fi) is not simultaneously
achievable with the desideratum of Gaussian dependence on fi; in the EP ap-
proximation we abandon exact normalization for tractability. The product of
the (independent) local likelihoods ti is

n∏
i=1

ti(fi|Z̃i, µ̃i, σ̃
2
i) = N (µ̃, Σ̃)

∏
i

Z̃i, (3.52)

where µ̃ is the vector of µ̃i and Σ̃ is diagonal with Σ̃ii = σ̃2
i . We approximate

the posterior p(f |X,y) by q(f |X,y)

q(f |X,y) ,
1

ZEP
p(f |X)

n∏
i=1

ti(fi|Z̃i, µ̃i, σ̃
2
i) = N (µ,Σ),

with µ = ΣΣ̃−1µ̃, and Σ = (K−1 + Σ̃−1)−1, (3.53)

where we have used eq. (A.7) to compute the product (and by definition, we
know that the distribution must normalize correctly over f). Notice, that we use
the tilde-parameters µ̃ and Σ̃ (and Z̃) for the local likelihood approximations,

13Note, that although each likelihood approximation is local, the posterior approximation
produced by the EP algorithm is global because the latent variables are coupled through the
prior.

14However, for computing the marginal likelihood normalization becomes crucial, see section
3.6.2.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

54 Classification

and plain µ and Σ for the parameters of the approximate posterior. The nor-
malizing term of eq. (3.53), ZEP = q(y|X), is the EP algorithm’s approximation
to the normalizing term Z from eq. (3.48) and eq. (3.49).

How do we choose the parameters of the local approximating distributions
ti? One of the most obvious ideas would be to minimize the Kullback-Leibler
(KL) divergence (see section A.5) between the posterior and its approximation:KL divergence

KL
(
p(f |X,y)||q(f |X,y)

)
. Direct minimization of this KL divergence for the

joint distribution on f turns out to be intractable. (One can alternatively
choose to minimize the reversed KL divergence KL

(
q(f |X,y)||p(f |X,y)

)
with

respect to the distribution q(f |X,y); this has been used to carry out variational
inference for GPC, see, e.g. Seeger [2000].)

Instead, the key idea in the EP algorithm is to update the individual ti ap-
proximations sequentially. Conceptually this is done by iterating the following
four steps: we start from some current approximate posterior, from which we
leave out the current ti, giving rise to a marginal cavity distribution. Secondly,
we combine the cavity distribution with the exact likelihood p(yi|fi) to get the
desired (non-Gaussian) marginal. Thirdly, we choose a Gaussian approximation
to the non-Gaussian marginal, and in the final step we compute the ti which
makes the posterior have the desired marginal from step three. These four steps
are iterated until convergence.

In more detail, we optimize the ti approximations sequentially, using the
approximation so far for all the other variables. In particular the approximate
posterior for fi contains three kinds of terms:

1. the prior p(f |X)

2. the local approximate likelihoods tj for all cases j 6= i

3. the exact likelihood for case i, p(yi|fi) = Φ(yifi)

Our goal is to combine these sources of information and choose parameters of ti
such that the marginal posterior is as accurate as possible. We will first combine
the prior and the local likelihood approximations into the cavity distribution

q−i(fi) ∝
∫
p(f |X)

∏
j 6=i

tj(fj |Z̃j , µ̃j , σ̃
2
j)dfj , (3.54)

and subsequently combine this with the exact likelihood for case i. Concep-
tually, one can think of the combination of prior and the n − 1 approximate
likelihoods in eq. (3.54) in two ways, either by explicitly multiplying out the
terms, or (equivalently) by removing approximate likelihood i from the approx-
imate posterior in eq. (3.53). Here we will follow the latter approach. The
marginal for fi from q(f |X,y) is obtained by using eq. (A.6) in eq. (3.53) to
give

q(fi|X,y) = N (fi|µi, σ
2
i), (3.55)

where σ2
i = Σii. This marginal eq. (3.55) contains one approximate term

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.6 Expectation Propagation 55

(namely ti) “too many”, so we need to divide it by ti to get the cavity dis- cavity distribution

tribution

q−i(fi) , N (fi|µ−i, σ
2
−i), (3.56)

where µ−i = σ2
−i(σ

−2
i µi − σ̃−2

i µ̃i), and σ2
−i = (σ−2

i − σ̃−2
i)−1.

Note that the cavity distribution and its parameters carry the subscript −i,
indicating that they include all cases except number i. The easiest way to
verify eq. (3.56) is to multiply the cavity distribution by the local likelihood
approximation ti from eq. (3.51) using eq. (A.7) to recover the marginal in
eq. (3.55). Notice that despite the appearance of eq. (3.56), the cavity mean
and variance are (of course) not dependent on µ̃i and σ̃2

i , see exercise 3.10.5.

To proceed, we need to find the new (un-normalized) Gaussian marginal
which best approximates the product of the cavity distribution and the exact
likelihood

q̂(fi) , ẐiN (µ̂i, σ̂
2
i) ' q−i(fi)p(yi|fi). (3.57)

It is well known that when q(x) is Gaussian, the distribution q(x) which min-
imizes KL

(
p(x)||q(x)

)
is the one whose first and second moments match that

of p(x), see eq. (A.24). As q̂(fi) is un-normalized we choose additionally to
impose the condition that the zero-th moments (normalizing constants) should
match when choosing the parameters of q̂(fi) to match the right hand side of
eq. (3.57). This process is illustrated in Figure 3.4.

The derivation of the moments is somewhat lengthy, so we have moved the
details to section 3.9. The desired posterior marginal moments are

Ẑi = Φ(zi), µ̂i = µ−i +
yiσ

2
−iN (zi)

Φ(zi)
√

1 + σ2
−i

, (3.58)

σ̂2
i = σ2

−i −
σ4
−iN (zi)

(1 + σ2
−i)Φ(zi)

(
zi +

N (zi)
Φ(zi)

)
, where zi =

yiµ−i√
1 + σ2

−i

.

The final step is to compute the parameters of the approximation ti which
achieves a match with the desired moments. In particular, the product of the
cavity distribution and the local approximation must have the desired moments,
leading to

µ̃i = σ̃2
i (σ̂−2

i µ̂i − σ−2
−i µ−i), σ̃2

i = (σ̂−2
i − σ−2

−i)−1,

Z̃i = Ẑi

√
2π
√
σ2
−i + σ̃2

i exp
(

1
2 (µ−i − µ̃i)2/(σ2

−i + σ̃2
i)
)
,

(3.59)

which is easily verified by multiplying the cavity distribution by the local ap-
proximation using eq. (A.7) to obtain eq. (3.58). Note that the desired marginal
posterior variance σ̂2

i given by eq. (3.58) is guaranteed to be smaller than the
cavity variance, such that σ̃2

i > 0 is always satisfied.15

This completes the update for a local likelihood approximation ti. We then
have to update the approximate posterior using eq. (3.53), but since only a

15In cases where the likelihood is log concave, one can show that σ̃2
i > 0, but for a general

likelihood there may be no such guarantee.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

56 Classification

−5 0 5 10
0

0.2

0.4

0.6

0.8

1
likelihood
cavity
posterior
approximation

−5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a) (b)

Figure 3.4: Approximating a single likelihood term by a Gaussian. Panel (a) dash-
dotted: the exact likelihood, Φ(fi) (the corresponding target being yi = 1) as a
function of the latent fi, dotted: Gaussian cavity distribution N (fi|µ−i =1, σ2

−i =9),
solid: posterior, dashed: posterior approximation. Panel (b) shows an enlargement of
panel (a).

single site has changed one can do this with a computationally efficient rank-
one update, see section 3.6.3. The EP algorithm is used iteratively, updating
each local approximation in turn. It is clear that several passes over the data
are required, since an update of one local approximation potentially influences
all of the approximate marginal posteriors.

3.6.1 Predictions

The procedure for making predictions in the EP framework closely resembles
the algorithm for the Laplace approximation in section 3.4.2. EP gives a Gaus-
sian approximation to the posterior distribution, eq. (3.53). The approximate
predictive mean for the latent variable f∗ becomes

Eq[f∗|X,y,x∗] = k>∗ K
−1µ = k>∗ K

−1(K−1 + Σ̃−1)−1Σ̃−1µ̃

= k>∗ (K + Σ̃)−1µ̃.
(3.60)

The approximate latent predictive variance is analogous to the derivation from
eq. (3.23) and eq. (3.24), with Σ̃ playing the rôle of W

Vq[f∗|X,y,x∗] = k(x∗,x∗)− k>∗ (K + Σ̃)−1k∗. (3.61)

The approximate predictive distribution for the binary target becomes

q(y∗ = 1|X,y,x∗) = Eq[π∗|X,y,x∗] =
∫

Φ(f∗)q(f∗|X,y,x∗) df∗, (3.62)

where q(f∗|X,y,x∗) is the approximate latent predictive Gaussian with mean
and variance given by eq. (3.60) and eq. (3.61). This integral is readily evaluated
using eq. (3.80), giving the predictive probability

q(y∗ = 1|X,y,x∗) = Φ
(k>∗ (K + Σ̃)−1µ̃√

1 + k(x∗,x∗)− k>∗ (K + Σ̃)−1k∗

)
. (3.63)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.6 Expectation Propagation 57

3.6.2 Marginal Likelihood

The EP approximation to the marginal likelihood can be found from the nor-
malization of eq. (3.53)

ZEP = q(y|X) =
∫
p(f |X)

n∏
i=1

ti(fi|Z̃i, µ̃i, σ̃
2
i) df . (3.64)

Using eq. (A.7) and eq. (A.8) in an analogous way to the treatment of the
regression setting in equations (2.28) and (2.30) we arrive at

log(ZEP|θ) = −1
2

log |K + Σ̃| − 1
2
µ̃>(K + Σ̃)−1µ̃ (3.65)

+
n∑

i=1

log Φ
(yiµ−i√

1 + σ2
−i

)
+

1
2

n∑
i=1

log(σ2
−i + σ̃2

i) +
n∑

i=1

(µ−i − µ̃i)2

2(σ2
−i + σ̃2

i)
,

where θ denotes the hyperparameters of the covariance function. This expres-
sion has a nice intuitive interpretation: the first two terms are the marginal
likelihood for a regression model for µ̃, each component of which has inde-
pendent Gaussian noise of variance Σ̃ii (as Σ̃ is diagonal), cf. eq. (2.30). The
remaining three terms come from the normalization constants Z̃i. The first
of these penalizes the cavity (or leave-one-out) distributions for not agreeing
with the classification labels, see eq. (3.82). In other words, we can see that
the marginal likelihood combines two desiderata, (1) the means of the local
likelihood approximations should be well predicted by a GP, and (2) the corre-
sponding latent function, when ignoring a particular training example, should
be able to predict the corresponding classification label well.

3.6.3 Implementation

The implementation for the EP algorithm follows the derivation in the previous
section closely, except that care has to be taken to achieve numerical stability,
in similar ways to the considerations for Laplace’s method in section 3.4.3.
In addition, we wish to be able to specifically handle the case were some site
variances σ̃2

i may tend to infinity; this corresponds to ignoring the corresponding
likelihood terms, and can form the basis of sparse approximations, touched upon
in section 8.4. In this limit, everything remains well-defined, although this is
not obvious e.g. from looking at eq. (3.65). It turns out to be slightly more
convenient to use natural parameters τ̃i, ν̃i and τ−i, ν−i for the site and cavity natural parameters

parameters

τ̃i = σ̃−2
i , S̃ = diag(τ̃), ν̃ = S̃µ̃, τ−i = σ−2

−i , ν−i = τ−iµ−i (3.66)

rather than σ̃2
i , µ̃i and σ2

−i, µ−i themselves. The symmetric matrix of central
importance is

B = I + S̃
1
2KS̃

1
2 , (3.67)

which plays a rôle equivalent to eq. (3.26). Expressions involving the inverse of
B are computed via Cholesky factorization, which is numerically stable since

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

58 Classification

input: K (covariance matrix), y (±1 targets)
2: ν̃ := 0, τ̃ := 0, Σ := K, µ := 0 initialization and eq. (3.53)

repeat
4: for i := 1 to n do

τ−i := σ−2
i − τ̃i compute approximate cavity para-

6: ν−i := σ−2
i µi − ν̃i

}
meters ν−i and τ−i using eq. (3.56)

compute the marginal moments µ̂i and σ̂2
i using eq. (3.58)

8: ∆τ̃ := σ̂−2
i − τ−i − τ̃i and τ̃i := τ̃i + ∆τ̃ update site parameters

ν̃i := σ̂−2
i µ̂i − ν−i

}
τ̃i and ν̃i using eq. (3.59)

10: Σ := Σ−
(
(∆τ̃)−1 + Σii

)−1
si s

>
i update Σ and µ by eq. (3.70) and

µ := Σν̃

}
eq. (3.53). si is column i of Σ

12: end for
L := cholesky(In + S̃

1
2KS̃

1
2) re-compute the approximate

14: V := L>\S̃ 1
2K

}
posterior parameters Σ and µ

Σ := K − V >V and µ := Σν̃ using eq. (3.53) and eq. (3.68)
16: until convergence

compute logZEP using eq. (3.65), (3.73) and (3.74) and the existing L
18: return: ν̃, τ̃ (natural site param.), logZEP (approx. log marg. likelihood)

Algorithm 3.5: Expectation Propagation for binary classification. The targets y are
used only in line 7. In lines 13-15 the parameters of the approximate posterior are
re-computed (although they already exist); this is done because of the large number of
rank-one updates in line 10 which would eventually cause loss of numerical precision
in Σ. The computational complexity is dominated by the rank-one updates in line
10, which takes O(n2) per variable, i.e. O(n3) for an entire sweep over all variables.
Similarly re-computing Σ in lines 13-15 is O(n3).

the eigenvalues of B are bounded below by one. The parameters of the Gaussian
approximate posterior from eq. (3.53) are computed as

Σ = (K−1 + S̃)−1 = K −K(K + S̃−1)−1K = K −KS̃ 1
2B−1S̃

1
2K. (3.68)

After updating the parameters of a site, we need to update the approximate
posterior eq. (3.53) taking the new site parameters into account. For the inverse
covariance matrix of the approximate posterior we have from eq. (3.53)

Σ−1 = K−1 + S̃, and thus Σ−1
new = K−1 + S̃old +(τ̃new

i − τ̃old
i)eie

>
i , (3.69)

where ei is a unit vector in direction i, and we have used that S̃ = diag(τ̃).
Using the matrix inversion lemma eq. (A.9), on eq. (3.69) we obtain the new Σ

Σnew = Σold − τ̃new
i − τ̃old

i

1 + (τ̃new
i − τ̃old

i)Σold
ii

sis
>
i , (3.70)

in time O(n2), where si is the i’th column of Σold. The posterior mean is then
calculated from eq. (3.53).

In the EP algorithm each site is updated in turn, and several passes over all
sites are required. Pseudocode for the EP-GPC algorithm is given in Algorithm

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.6 Expectation Propagation 59

input: ν̃, τ̃ (natural site param.), X (inputs), y (±1 targets),
k (covariance function), x∗ test input

2: L := cholesky(In + S̃
1
2KS̃

1
2) B = In + S̃

1
2KS̃

1
2

z := S̃
1
2L>\(L\(S̃ 1

2Kν̃))
4: f̄∗ := k(x∗)>(ν̃ − z)

}
eq. (3.60) using eq. (3.71)

v := L\
(
S̃

1
2 k(x∗)

)
6: V[f∗] := k(x∗,x∗)− v>v

}
eq. (3.61) using eq. (3.72)

π̄∗ := Φ(f̄∗/
√

1 + V[f∗]) eq. (3.63)
8: return: π̄∗ (predictive class probability (for class 1))

Algorithm 3.6: Predictions for expectation propagation. The natural site parameters
ν̃ and τ̃ of the posterior (which can be computed using algorithm 3.5) are input. For
multiple test inputs lines 4-7 are applied to each test input. Computational complexity
is n3/6 + n2 operations once (line 2 and 3) plus n2 operations per test case (line
5), although the Cholesky decomposition in line 2 could be avoided by storing it in
Algorithm 3.5. Note the close similarity to Algorithm 3.2 on page 47.

3.5. There is no formal guarantee of convergence, but several authors have
reported that EP for Gaussian process models works relatively well.16

For the predictive distribution, we get the mean from eq. (3.60) which is
evaluated using

Eq[f∗|X,y,x∗] = k>∗ (K + S̃−1)−1S̃−1ν̃ = k>∗
(
I − (K + S̃−1)−1K

)
ν̃

= k>∗ (I − S̃ 1
2B−1S̃

1
2K)ν̃,

(3.71)

and the predictive variance from eq. (3.61) similarly by

Vq[f∗|X,y,x∗] = k(x∗,x∗)− k>∗ (K + S̃−1)−1k∗

= k(x∗,x∗)− k>∗ S̃
1
2B−1S̃

1
2 k∗.

(3.72)

Pseudocode for making predictions using EP is given in Algorithm 3.6.

Finally, we need to evaluate the approximate log marginal likelihood from
eq. (3.65). There are several terms which need careful consideration, principally
due to the fact the τ̃i values may be arbitrarily small (and cannot safely be
inverted). We start with the fourth and first terms of eq. (3.65)

1
2 log |T−1+S̃−1| − 1

2 log |K+Σ̃| = 1
2 log |S̃−1(I+S̃T−1)| − 1

2 log |S̃−1B|

= 1
2

∑
i

log(1+τ̃iτ−1
−i)−

∑
i

logLii, (3.73)

where T is a diagonal matrix of cavity precisions Tii = τ−i = σ−2
−i and L is the

Cholesky factorization of B. In eq. (3.73) we have factored out the matrix S̃−1

from both determinants, and the terms cancel. Continuing with the part of the
16It has been conjectured (but not proven) by L. Csató (personal communication) that EP

is guaranteed to converge if the likelihood is log concave.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

60 Classification

fifth term from eq. (3.65) which is quadratic in µ̃ together with the second term

1
2 µ̃

>(T−1 + S̃−1)−1µ̃− 1
2 µ̃

>(K + Σ̃)−1µ̃

= 1
2 ν̃

>S̃−1
(
(T−1 + S̃−1)−1 − (K + S̃−1)−1

)
S̃−1ν̃ (3.74)

= 1
2 ν̃

>((K−1 + S̃)−1 − (T + S̃)−1
)
ν̃

= 1
2 ν̃

>(K −KS̃ 1
2B−1S̃

1
2K − (T + S̃)−1

)
ν̃,

where in eq. (3.74) we apply the matrix inversion lemma eq. (A.9) to both
parenthesis to be inverted. The remainder of the fifth term in eq. (3.65) is
evaluated using the identity

1
2µ

>
−i(T

−1 + S̃−1)−1(µ−i − 2µ̃) = 1
2µ

>
−iT (S̃ + T)−1(S̃µ−i − 2ν̃), (3.75)

where µ−i is the vector of cavity means µ−i. The third term in eq. (3.65)
requires in no special treatment and can be evaluated as written.

3.7 Experiments

In this section we present the results of applying the algorithms for GP clas-
sification discussed in the previous sections to several data sets. The purpose
is firstly to illustrate the behaviour of the methods and secondly to gain some
insights into how good the performance is compared to some other commonly-
used machine learning methods for classification.

Section 3.7.1 illustrates the action of a GP classifier on a toy binary pre-
diction problem with a 2-d input space, and shows the effect of varying the
length-scale ` in the SE covariance function. In section 3.7.2 we illustrate and
compare the behaviour of the two approximate GP methods on a simple one-
dimensional binary task. In section 3.7.3 we present results for a binary GP
classifier on a handwritten digit classification task, and study the effect of vary-
ing the kernel parameters. In section 3.7.4 we carry out a similar study using
a multi-class GP classifier to classify digits from all ten classes 0-9. In section
3.8 we discuss the methods from both experimental and theoretical viewpoints.

3.7.1 A Toy Problem

Figure 3.5 illustrates the operation of a Gaussian process classifier on a binary
problem using the squared exponential kernel with a variable length-scale and
the logistic response function. The Laplace approximation was used to make
the plots. The data points lie within the square [0, 1]2, as shown in panel (a).
Notice in particular the lone white point amongst the black points in the NE
corner, and the lone black point amongst the white points in the SW corner.

In panel (b) the length-scale is ` = 0.1, a relatively short value. In this case
the latent function is free to vary relatively quickly and so the classifications

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.7 Experiments 61

°

°

°

•

°

°

°

°

°

•

°

•

•

•

•

•

•

°
•

•

0.25

0.5

0.5

0.5

0.75

0.25

(a) (b)

0.30.5

0.7 0.3

0.5

0.7

(c) (d)

Figure 3.5: Panel (a) shows the location of the data points in the two-dimensional
space [0, 1]2. The two classes are labelled as open circles (+1) and closed circles (-
1). Panels (b)-(d) show contour plots of the predictive probability Eq[π(x∗)|y] for
signal variance σ2

f = 9 and length-scales ` of 0.1, 0.2 and 0.3 respectively. The de-
cision boundaries between the two classes are shown by the thicker black lines. The
maximum value attained is 0.84, and the minimum is 0.19.

provided by thresholding the predictive probability Eq[π(x∗)|y] at 0.5 agrees
with the training labels at all data points. In contrast, in panel (d) the length-
scale is set to ` = 0.3. Now the latent function must vary more smoothly, and
so the two lone points are misclassified. Panel (c) was obtained with ` = 0.2.
As would be expected, the decision boundaries are more complex for shorter
length-scales. Methods for setting the hyperparameters based on the data are
discussed in chapter 5.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

62 Classification

−8 −6 −4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

input, x

pr
ed

ic
tiv

e
pr

ob
ab

ili
ty

, π
*

Class +1
Class −1
Laplace
EP
p(y|x)

−8 −6 −4 −2 0 2 4

−10

−5

0

5

10

15

input, x

la
te

nt
 fu

nc
tio

n,
 f(

x)

Laplace
EP

(a) (b)

Figure 3.6: One-dimensional toy classification dataset: Panel (a) shows the dataset,
where points from class +1 have been plotted at π = 1 and class −1 at π = 0, together
with the predictive probability for Laplace’s method and the EP approximation. Also
shown is the probability p(y=+1|x) of the data generating process. Panel (b) shows
the corresponding distribution of the latent function f(x), showing curves for the
mean, and ±2 standard deviations, corresponding to 95% confidence regions.

3.7.2 One-dimensional Example

Although Laplace’s method and the EP approximation often give similar re-
sults, we here present a simple one-dimensional problem which highlights some
of the differences between the methods. The data, shown in Figure 3.6(a),
consists of 60 data points in three groups, generated from a mixture of three
Gaussians, centered on −6 (20 points), 0 (30 points) and 2 (10 points), where
the middle component has label −1 and the two other components label +1; all
components have standard deviation 0.8; thus the two left-most components
are well separated, whereas the two right-most components overlap.

Both approximation methods are shown with the same value of the hyperpa-
rameters, ` = 2.6 and σf = 7.0, chosen to maximize the approximate marginal
likelihood for Laplace’s method. Notice in Figure 3.6 that there is a consid-
erable difference in the value of the predictive probability for negative inputs.
The Laplace approximation seems overly cautious, given the very clear separa-
tion of the data. This effect can be explained as a consequence of the intuition
that the influence of “well-explained data points” is effectively reduced, see the
discussion around eq. (3.19). Because the points in the left hand cluster are
relatively well-explained by the model, they don’t contribute as strongly to the
posterior, and thus the predictive probability never gets very close to 1. Notice
in Figure 3.6(b) the 95% confidence region for the latent function for Laplace’s
method actually includes functions that are negative at x = −6, which does
not seem appropriate. For the positive examples centered around x = 2 on the
right-hand side of Figure 3.6(b), this effect is not visible, because the points
around the transition between the classes at x=1 are not so “well-explained”;
this is because the points near the boundary are competing against the points
from the other class, attempting to pull the latent function in opposite di-
rections. Consequently, the datapoints in this region all contribute strongly.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.7 Experiments 63

Another sign of this effect is that the uncertainty in the latent function, which
is closely related to the “effective” local density of the data, is very small in
the region around x=1; the small uncertainty reveals a high effective density,
which is caused by all data points in the region contributing with full weight. It
should be emphasized that the example was artificially constructed specifically
to highlight this effect.

Finally, Figure 3.6 also shows clearly the effects of uncertainty in the latent
function on Eq[π∗|y]. In the region between x = 2 to x = 4, the latent mean
in panel (b) increases slightly, but the predictive probability decreases in this
region in panel (a). This is caused by the increase in uncertainty for the latent
function; when the widely varying functions are squashed through the non-
linearity it is possible for both classes to get high probability, and the average
prediction becomes less extreme.

3.7.3 Binary Handwritten Digit Classification Example

Handwritten digit and character recognition are popular real-world tasks for
testing and benchmarking classifiers, with obvious application e.g. in postal
services. In this section we consider the discrimination of images of the digit
3 from images of the digit 5 as an example of binary classification; the specific
choice was guided by the experience that this is probably one of the most
difficult binary subtasks. 10-class classification of the digits 0-9 is described in
the following section.

We use the US Postal Service (USPS) database of handwritten digits which USPS dataset

consists of 9298 segmented 16 × 16 greyscale images normalized so that the
intensity of the pixels lies in [−1, 1]. The data was originally split into a training
set of 7291 cases and a testset of the remaining 2007 cases, and has often been
used in this configuration. Unfortunately, the data in the two partitions was
collected in slightly different ways, such that the data in the two sets did not
stem from the same distribution.17 Since the basic underlying assumption for
most machine learning algorithms is that the distribution of the training and
test data should be identical, the original data partitions are not really suitable
as a test bed for learning algorithms, the interpretation of the results being
hampered by the change in distribution. Secondly, the original test set was
rather small, sometimes making it difficult to differentiate the performance of
different algorithms. To overcome these two problems, we decided to pool the USPS repartitioned

two partitions and randomly split the data into two identically sized partitions
of 4649 cases each. A side-effect is that it is not trivial to compare to results
obtained using the original partitions. All experiments reported here use the
repartitioned data. The binary 3s vs. 5s data has 767 training cases, divided
406/361 on 3s vs. 5s, while the test set has 773 cases split 418/355.

We present results of both Laplace’s method and EP using identical ex- squared exponential
covariance functionperimental setups. The squared exponential covariance function k(x,x′) =

17It is well known e.g. that the original test partition had more difficult cases than the
training set.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

64 Classification

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Log marginal likelihood

−100

−105 −115

−115

−130

−150

−200

−200

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Information about test targets in bits

0.25

0.25

0.5

0.5

0.7

0.7

0.8

0.8

0.84

(a) (b)

−5 0 5
0

10

20

latent means, f

fr
eq

ue
nc

y

Training set latent means

−5 0 5
0

10

20

latent means, f

fr
eq

ue
nc

y

Test set latent means

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

21
19
19
19
19
19
19
19
19
18
18
18
19
19
19
19
19
19
19
19
19
19
19

22
20
18
18
19
19
18
17
17
17
17
17
18
18
18
18
18
18
18
18
18
18
18

23
23
21
18
18
18
17
16
16
16
15
15
16
16
16
16
16
16
16
16
16
16
15

29
26
22
20
18
17
17
16
16
16
16
17
17
17
17
17
17
17
17
17
17
17
17

33
29
26
24
23
19
18
17
15
16
16
16
16
16
16
16
15
15
15
15
15
15
15

34
34
30
28
26
25
23
23
20
19
18
17
17
17
17
17
17
17
17
18
18
18
18

35
34
34
30
30
29
27
24
23
22
21
20
19
18
18
18
18
18
18
18
19
19
19

36
35
34
34
32
30
30
27
26
23
22
22
22
21
21
20
21
20
20
20
20
20
20

39
36
36
34
35
32
32
31
30
29
27
25
24
24
23
24
23
22
22
22
22
22
23

41
39
37
36
35
36
32
32
31
30
30
26
25
25
25
26
26
26
26
25
24
24
24

42
40
39
38
36
35
36
32
32
31
31
29
26
27
25
25
26
27
28
28
28
28
28

45
42
40
39
38
36
36
36
32
32
31
31
29
27
26
25
25
28
28
28
29
29
29

51
45
42
40
39
38
36
36
36
32
32
31
31
29
27
26
26
28
30
29
30
30
30

60
51
45
42
40
39
38
36
36
36
32
33
31
31
29
27
28
27
28
30
29
30
30

89
60
51
45
42
40
39
38
36
37
36
32
33
31
31
28
28
28
29
30
30
29
30

88
60
51
45
42
40
39
38
36
37
36
32
33
31
31
28
29
28
26
30
30
29

88
60
51
45
42
40
39
38
36
37
36
32
33
31
31
28
29
28
29
30
30

Number of test misclassifications

(c) (d)

Figure 3.7: Binary Laplace approximation: 3s vs. 5s discrimination using the USPS
data. Panel (a) shows a contour plot of the log marginal likelihood as a function of
log(`) and log(σf). The marginal likelihood has an optimum at log(`) = 2.85 and
log(σf) = 2.35, with an optimum value of log p(y|X, θ) = −99. Panel (b) shows a
contour plot of the amount of information (in excess of a simple base-line model, see
text) about the test cases in bits as a function of the same variables. The statistical
uncertainty (because of the finite number of test cases) is about ±0.03 bits (95%
confidence interval). Panel (c) shows a histogram of the latent means for the training
and test sets respectively at the values of the hyperparameters with optimal marginal
likelihood (from panel (a)). Panel (d) shows the number of test errors (out of 773)
when predicting using the sign of the latent mean.

σ2
f exp(−|x − x′|2/2`2) was used, so there are two free parameters, namely σf

(the process standard deviation, which controls its vertical scaling), and the
length-scale ` (which controls the input length-scale). Let θ = (log(`), log(σf))hyperparameters

denote the vector of hyperparameters. We first present the results of Laplace’s
method in Figure 3.7 and discuss these at some length. We then briefly compare
these with the results of the EP method in Figure 3.8.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.7 Experiments 65

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Log marginal likelihood

−92
−95

−100

−105

−105

−115

−130 −160

−160

−200

−200

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Information about test targets in bits

0.25

0.5

0.70.7

0.8

0.8
0.84

0.84

0.86

0.88

0.89

(a) (b)

−100 −50 0 50
0

10

20

latent means, f

fr
eq

ue
nc

y

Training set latent means

−100 −50 0 50
0

10

20

latent means, f

fr
eq

ue
nc

y

Test set latent means

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

21
20
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19

22
20
19
18
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19

24
23
21
19
18
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

29
26
23
22
20
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18
18

33
30
25
25
23
21
19
17
17
16
17
18
18
18
18
18
18
18
18
18
18
18
18

34
35
30
29
26
25
24
21
20
19
19
19
18
18
18
18
18
18
18
18
18
18
18

35
34
34
31
29
29
27
26
24
23
23
21
20
20
20
20
21
21
21
21
21
21
21

36
35
34
34
32
31
31
31
30
25
23
23
23
24
24
24
24
24
25
25
25
25
25

39
36
36
34
34
32
32
32
30
30
27
24
23
26
25
25
26
26
26
26
26
26
26

41
39
37
36
35
36
32
32
32
30
29
29
24
24
26
26
27
27
27
27
27
27
27

42
40
39
37
36
35
36
32
32
31
31
29
29
26
23
26
27
27
27
27
27
27
27

45
42
40
39
38
36
36
36
32
33
31
31
29
28
26
24
25
26
28
28
28
28
27

51
45
42
40
39
38
36
36
36
32
33
31
31
29
28
26
25
28
28
28
28
27
28

60
51
45
42
40
39
38
36
36
36
32
33
31
31
29
28
27
27
28
29
28
27
27

89
60
51
45
42
40
39
38
36
36
36
32
33
31
31
29
28
27
27
29
29
28
27

88
60
51
45
42
40
39
38
36
36
36
32
33
31
31
29
28
27
27
29
28
28

87
60
51
45
42
40
39
38
36
36
36
32
33
31
31
29
28
28
27
29
28

Number of test misclassifications

(c) (d)

Figure 3.8: The EP algorithm on 3s vs. 5s digit discrimination task from the USPS
data. Panel (a) shows a contour plot of the log marginal likelihood as a function of
the hyperparameters log(`) and log(σf). The marginal likelihood has an optimum
at log(`) = 2.6 at the maximum value of log(σf), but the log marginal likelihood is
essentially flat as a function of log(σf) in this region, so a good point is at log(σf) =
4.1, where the log marginal likelihood has a value of −90. Panel (b) shows a contour
plot of the amount of information (in excess of the baseline model) about the test cases
in bits as a function of the same variables. Zero bits corresponds to no information
and one bit to perfect binary generalization. The 773 test cases allows the information
to be determined within ±0.035 bits. Panel (c) shows a histogram of the latent means
for the training and test sets respectively at the values of the hyperparameters with
optimal marginal likelihood (from panel a). Panel (d) shows the number of test errors
(out of 773) when predicting using the sign of the latent mean.

In Figure 3.7(a) we show a contour plot of the approximate log marginal Laplace results

likelihood (LML) log q(y|X,θ) as a function of log(`) and log(σf), obtained
from runs on a grid of 17 evenly-spaced values of log(`) and 23 evenly-spaced
values of log(σf). Notice that there is a maximum of the marginal likelihood

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

66 Classification

near log(`) = 2.85 and log(σf) = 2.35. As will be explained in chapter 5, we
would expect that hyperparameters that yield a high marginal likelihood would
give rise to good predictions. Notice that an increase of 1 unit on the log scale
means that the probability is 2.7 times larger, so the marginal likelihood in
Figure 3.7(a) is fairly well peaked.

There are at least two ways we can measure the quality of predictions at the
test points. The first is the test log predictive probability log2 p(y∗|x∗,D,θ).test log predictive

probability In Figure 3.7(b) we plot the average over the test set of the test log predictive
probability for the same range of hyperparameters. We express this as the
amount of information in bits about the targets, by using log to the base 2.
Further, we off-set the value by subtracting the amount of information that a
simple base-line method would achieve. As a base-line model we use the bestbase-line method

possible model which does not use the inputs; in this case, this model would
just produce a predictive distribution reflecting the frequency of the two classes
in the training set, i.e.

− 418/773 log2(406/767)− 355/773 log2(361/767) = 0.9956 bits, (3.76)

essentially 1 bit. (If the classes had been perfectly balanced, and the training
and test partitions also exactly balanced, we would arrive at exactly 1 bit.)
Thus, our scaled information score used in Figure 3.7(b) would be zero for a
method that did random guessing and 1 bit for a method which did perfect
classification (with complete confidence). The information score measures howinterpretation of

information score much information the model was able to extract from the inputs about the
identity of the output. Note that this is not the mutual information between
the model output and the test targets, but rather the Kullback-Leibler (KL)
divergence between them. Figure 3.7 shows that there is a good qualitative
agreement between the marginal likelihood and the test information, compare
panels (a) and (b).

The second (and perhaps most commonly used) method for measuring the
quality of the predictions is to compute the number of test errors made whenerror rate

using the predictions. This is done by computing Eq[π∗|y] (see eq. (3.25)) for
each test point, thresholding at 1/2 to get “hard” predictions and counting the
number of errors. Figure 3.7(d) shows the number of errors produced for each
entry in the 17× 23 grid of values for the hyperparameters. The general trend
in this table is that the number of errors is lowest in the top left-hand corner
and increases as one moves right and downwards. The number of errors rises
dramatically in the far bottom righthand corner. However, note in general that
the number of errors is quite small (there are 773 cases in the test set).

The qualitative differences between the two evaluation criteria depicted in
Figure 3.7 panels (b) and (d) may at first sight seem alarming. And although
panels (a) and (b) show similar trends, one may worry about using (a) to select
the hyperparameters, if one is interested in minimizing the test misclassification
rate. Indeed a full understanding of all aspects of these plots is quite involved,
but as the following discussion suggests, we can explain the major trends.

First, bear in mind that the effect of increasing ` is to make the kernel
function broader, so we might expect to observe effects like those in Figure 3.5

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.7 Experiments 67

where large widths give rise to a lack of flexibility. Keeping ` constant, the
effect of increasing σf is to increase the magnitude of the values obtained for
f̂ . By itself this would lead to “harder” predictions (i.e. predictive probabilities
closer to 0 or 1), but we have to bear in mind that the variances associated
will also increase and this increased uncertainty for the latent variables tends
to “soften” the predictive probabilities, i.e. move them closer to 1/2.

The most marked difference between Figure 3.7(b) and (d) is the behaviour
in the the top left corner, where classification error rate remains small, but
the test information and marginal likelihood are both poor. In the left hand
side of the plots, the length scale ` is very short. This causes most points to
be deemed “far away” from most other points. In this regime the prediction
is dominated by the class-label of the nearest neighbours, and for the task at
hand, this happens to give a low misclassification rate. In this parameter region
the test latent variables f∗ are very close to zero, corresponding to probabilities
very close to 1/2. Consequently, the predictive probabilities carry almost no
information about the targets. In the top left corner, the predictive probabilities
for all 773 test cases lie in the interval [0.48, 0.53]. Notice that a large amount
of information implies a high degree of correct classification, but not vice versa.
At the optimal marginal likelihood values of the hyperparameters, there are 21
misclassifications, which is slightly higher that the minimum number attained
which is 15 errors.

In exercise 3.10.6 readers are encouraged to investigate further the behaviour
of f̂ and the predictive probabilities etc. as functions of log(`) and log(σf) for
themselves.

In Figure 3.8 we show the results on the same experiment, using the EP EP results

method. The findings are qualitatively similar, but there are significant dif-
ferences. In panel (a) the approximate log marginal likelihood has a different
shape than for Laplace’s method, and the maximum of the log marginal likeli-
hood is about 9 units on a natural log scale larger (i.e. the marginal probability
is exp(9) ' 8000 times higher). Also note that the marginal likelihood has a
ridge (for log ` = 2.6) that extends into large values of log σf . For these very
large latent amplitudes (see also panel (c)) the probit likelihood function is well
approximated by a step function (since it transitions from low to high values
in the domain [−3, 3]). Once we are in this regime, it is of course irrelevant
exactly how large the magnitude is, thus the ridge. Notice, however, that this
does not imply that the prediction will always be “hard”, since the variance of
the latent function also grows.

Figure 3.8 shows a good qualitative agreement between the approximate
log marginal likelihood and the test information, compare panels (a) and (b).
The best value of the test information is significantly higher for EP than for
Laplace’s method. The classification error rates in panel (d) show a fairly
similar behaviour to that of Laplace’s method. In Figure 3.8(c) we show the
latent means for training and test cases. These show a clear separation on
the training set, and much larger magnitudes than for Laplace’s method. The
absolute values of the entries in f∗ are quite large, often well in excess of 50,
which may suggest very “hard” predictions (probabilities close to zero or one),

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

68 Classification

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
*
 MAP

π * a
ve

ra
ge

d

0 0.2 0.4 0.6 0.8 1
0
5

10
15
20
25

π
*
 MAP

fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1
0
5

10
15
20
25

π
*
 averaged

fr
eq

ue
nc

y

(a) (b)

Figure 3.9: MAP vs. averaged predictions for the EP algorithm for the 3’s vs. 5’s
digit discrimination using the USPS data. The optimal values of the hyperparameters
from Figure 3.8(a) log(`) = 2.6 and log(σf) = 4.1 are used. The MAP predictions
σ(Eq[f∗|y]) are “hard”, mostly being very close to zero or one. On the other hand,
the averaged predictions Eq[π∗|y] from eq. (3.25) are a lot less extreme. In panel (a)
the 21 cases that were misclassified are indicated by crosses (correctly classified cases
are shown by points). Note that only 4 of the 21 misclassified points have confident
predictions (i.e. outside [0.1, 0.9]). Notice that all points fall in the triangles below
and above the horizontal line, confirming that averaging does not change the “most
probable” class, and that it always makes the probabilities less extreme (i.e. closer to
1/2). Panel (b) shows histograms of averaged and MAP predictions, where we have
truncated values over 30.

since the sigmoid saturates for smaller arguments. However, when taking the
uncertainties in the latent variables into account, and computing the predictions
using averaging as in eq. (3.25) the predictive probabilities are “softened”. In
Figure 3.9 we can verify that the averaged predictive probabilities are much less
extreme than the MAP predictions.

In order to evaluate the performance of the two approximate methods for
GP classification, we compared to a linear probit model, a support vector ma-
chine, a least-squares classifier and a nearest neighbour approach, all of which
are commonly used in the machine learning community. In Figure 3.10 we showerror-reject curve

error-reject curves for both misclassification rate and the test information mea-
sure. The error-reject curve shows how the performance develops as a function
of the fraction of test cases that is being rejected. To compute these, we first
modify the methods that do not naturally produce probabilistic predictions to
do so, as described below. Based on the predictive probabilities, we reject test
cases for which the maximum predictive probability is smaller than a threshold.
Varying the threshold produces the error-reject curve.

The GP classifiers applied in Figure 3.10 used the hyperparameters which
optimized the approximate marginal likelihood for each of the two methods.
For the GP classifiers there were two free parameters σf and `. The linear pro-
bit model (linear logistic models are probably more common, but we chose thelinear probit model

probit here, since the other likelihood based methods all used probit) can be

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.7 Experiments 69

0 0.1 0.2 0.3
0

0.01

0.02

0.03

rejection rate

m
is

cl
as

si
fic

at
io

n
ra

te

EP
Laplace
SVM
P1NN
LSC
lin probit

0 0.2 0.4 0.6 0.8 1

0.85

0.9

0.95

1

rejection rate

te
st

 in
fo

rm
at

io
n,

 b
its

EP
Laplace
SVM
P1NN
LSC
lin probit

(a) (b)

Figure 3.10: Panel (a) shows the error-reject curve and panel (b) the amount of
information about the test cases as a function of the rejection rate. The probabilistic
one nearest neighbour (P1NN) method has much worse performance than the other
methods. Gaussian processes with EP behaves similarly to SVM’s although the clas-
sification rate for SVM for low rejection rates seems to be a little better. Laplace’s
method is worse than EP and SVM. The GP least squares classifier (LSC) described
in section 6.5 performs the best.

implemented as GP model using Laplace’s method, which is equivalent to (al-
though not computationally as efficient as) iteratively reweighted least squares
(IRLS). The covariance function k(x,x′) = θ2x>x′ has a single hyperparam-
eter, θ, which was set by maximizing the log marginal likelihood. This gives
log p(y|X, θ) = −105, at θ = 2.0, thus the marginal likelihood for the linear
covariance function is about 6 units on a natural log scale lower than the max-
imum log marginal likelihood for the Laplace approximation using the squared
exponential covariance function.

The support vector machine (SVM) classifier (see section 6.4 for further de- support vector machine

tails on the SVM) used the same SE kernel as the GP classifiers. For the SVM
the rôle of ` is identical, and the trade-off parameter C in the SVM formulation
(see eq. (6.37)) plays a similar rôle to σ2

f . We carried out 5-fold cross validation
on a grid in parameter space to identify the best combination of parameters
w.r.t. the error rate; this turned out to be at C = 1, ` = 10. Our experiments
were conducted using the SVMTorch software [Collobert and Bengio, 2001].
In order to compute probabilistic predictions, we squashed the test-activities
through a cumulative Gaussian, using the methods proposed by Platt [2000]:
we made a parameterized linear transformation of the test-activities and fed
this through the cumulative Gaussian.18 The parameters of the linear trans-
formation were chosen to maximize the log predictive probability, evaluated on
the hold-out sets of the 5-fold cross validation.

The probabilistic one nearest neighbour (P1NN) method is a simple nat- probabilistic
one nearest neighbourural extension to the classical one nearest neighbour method which provides

probabilistic predictions. It computes the leave-one-out (LOO) one nearest
neighbour prediction on the training set, and records the fraction of cases π
where the LOO predictions were correct. On test cases, the method then pre-

18Platt [2000] used a logistic whereas we use a cumulative Gaussian.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

70 Classification

dicts the one nearest neighbour class with probability π, and the other class
with probability 1−π. Rejections are based on thresholding on the distance to
the nearest neighbour.

The least-squares classifier (LSC) is described in section 6.5. In order to
produce probabilistic predictions, the method of Platt [2000] was used (as de-
scribed above for the SVM) using the predictive means only (the predictive
variances were ignored19), except that instead of the 5-fold cross validation,
leave-one-out cross-validation (LOO-CV) was used, and the kernel parameters
were also set using LOO-CV.

Figure 3.10 shows that the three best methods are the EP approximation for
GPC, the SVM and the least-squares classifier (LSC). Presenting both the error
rates and the test information helps to highlight differences which may not be
apparent from a single plot alone. For example, Laplace’s method and EP seem
very similar on error rates, but quite different in test information. Notice also,
that the error-reject curve itself reveals interesting differences, e.g. notice that
although the P1NN method has an error rate comparable to other methods at
zero rejections, things don’t improve very much when rejections are allowed.
Refer to section 3.8 for more discussion of the results.

3.7.4 10-class Handwritten Digit Classification Example

We apply the multi-class Laplace approximation developed in section 3.5 to the
10-class handwritten digit classification problem from the (repartitioned) USPS
dataset, having n = 4649 training cases and n∗ = 4649 cases for testing, see
page 63. We used a squared exponential covariance function with two hyper-
parameters: a single signal amplitude σf , common to all 10 latent functions,
and a single length-scale parameter `, common to all 10 latent functions and
common to all 256 input dimensions.

The behaviour of the method was investigated on a grid of values for the
hyperparameters, see Figure 3.11. Note that the correspondence between the
log marginal likelihood and the test information is not as close as for Laplace’s
method for binary classification in Figure 3.7 on page 64. The maximum value
of the log marginal likelihood attained is -1018, and for the hyperparameters
corresponding to this point the error rate is 3.1% and the test information
2.67 bits. As with the binary classification problem, the test information is
standardized by subtracting off the negative entropy (information) of the targets
which is −3.27 bits. The classification error rate in Figure 3.11(c) shows a clear
minimum, and this is also attained at a shorter length-scale than where the
marginal likelihood and test information have their maxima. This effect was
also seen in the experiments on binary classification.

To gain some insight into the level of performance we compared these re-
sults with those obtained with the probabilistic one nearest neighbour method
P1NN, a multiple logistic regression model and a SVM. The P1NN first uses an

19Of course, one could also have tried a variant where the full latent predictive distribution
was averaged over, but we did not do that here.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.7 Experiments 71

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Log marginal likelihood

−1050

−1100

−1200

−1300

−1500

−2000

−3000

−3000 −3000

(a)

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Information about the test targets in bits

1

1

2

2

2.5

2.5

2.8

2.8

2.95

2.99

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Test set misclassification percentage

2.6
2.7

2.8

3
3.3

4

5

10

10

(b) (c)

Figure 3.11: 10-way digit classification using the Laplace approximation. Panel
(a) shows the approximate log marginal likelihood, reaching a maximum value of
log p(y|X, θ) = −1018 at log ` = 2.35 and log σf = 2.6. In panel (b) information
about the test cases is shown. The maximum possible amount of information about
the test targets, corresponding to perfect classification, would be 3.27 bits (the entropy
of the targets). At the point of maximum marginal likelihood, the test information is
2.67 bits. In panel (c) the test set misclassification rate is shown in percent. At the
point of maximum marginal likelihood the test error rate is 3.1%.

internal leave-one-out assessment on the training set to estimate its probabil-
ity of being correct, π. For the test set it then predicts the nearest neighbour
with probability π and all other classes with equal probability (1 − π)/9. We
obtained π = 0.967, a test information of 2.98 bits and a test set classification
error rate of 3.0%.

We also compare to multiple linear logistic regression. One way to imple-
ment this method is to view it as a Gaussian process with a linear covariance

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

72 Classification

function, although it is equivalent and computationally more efficient to do the
Laplace approximation over the “weights” of the linear model. In our case there
are 10×257 weights (256 inputs and one bias), whereas there are 10×4696 latent
function values in the GP. The linear covariance function k(x,x′) = θ2x>x′ has
a single hyperparameter θ (used for all 10 latent functions). Optimizing the log
marginal likelihood w.r.t. θ gives log p(y|X, θ) = −1339 at θ = 1.45. Using this
value for the hyperparameter, the test information is 2.95 bits and the test set
error rate is 5.7%.

Finally, a support vector machine (SVM) classifier was trained using the
same SE kernel as the Gaussian process classifiers. (See section 6.4 for further
details on the SVM.) As in the binary SVM case there were two free parameters
` (the length-scale of the kernel), and the trade-off parameter C (see eq. (6.37)),
which plays a similar rôle to σ2

f . We carried out 5-fold cross-validation on a grid
in parameter space to identify the best combination of parameters w.r.t. the
error rate; this turned out to be at C = 1, ` = 5. Our experiments were
conducted using the SVMTorch software [Collobert and Bengio, 2001], which
implements multi-class SVM classification using the one-versus-rest method de-
scribed in section 6.5. The test set error rate for the SVM is 2.2%; we did not
attempt to evaluate the test information for the multi-class SVM.

3.8 Discussion

In the previous section we presented several sets of experiments comparing the
two approximate methods for inference in GPC models, and comparing them to
other commonly-used supervised learning methods. In this section we discuss
the results and attempt to relate them to the properties of the models.

For the binary examples from Figures 3.7 and 3.8, we saw that the two ap-
proximations showed quite different qualitative behaviour of the approximated
log marginal likelihood, although the exact marginal likelihood is of course iden-
tical. The EP approximation gave a higher maximum value of the log marginal
likelihood (by about 9 units on the log scale) and the test information was
somewhat better than for Laplace’s method, although the test set error rates
were comparable. However, although this experiment seems to favour the EP
approximation, it is interesting to know how close these approximations are to
the exact (analytically intractable) solutions. In Figure 3.12 we show the resultsMonte Carlo results

of running a sophisticated Markov chain Monte Carlo method called Annealed
Importance Sampling [Neal, 2001] carried out by Kuss and Rasmussen [2005].
The USPS dataset for these experiments was identical to the one used in Fig-
ures 3.7 and 3.8, so the results are directly comparable. It is seen that the
MCMC results indicate that the EP method achieves a very high level of accu-
racy, i.e. that the difference between EP and Laplace’s method is caused almost
exclusively by approximation errors in Laplace’s method.

The main reason for the inaccuracy of Laplace’s method is that the high
dimensional posterior is skew, and that the symmetric approximation centered
on the mode is not characterizing the posterior volume very well. The posterior

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.8 Discussion 73

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Log marginal likelihood

−92
−95

−100

−105

−105

−115

−130

−160

−160

−200

−200

2 3 4 5

0

1

2

3

4

5

log lengthscale, log(l)

lo
g

m
ag

ni
tu

de
, l

og
(σ

f)

Information about test targets in bits

0.25

0.5
0.7

0.7

0.8

0.8

0.84

0.84

0.86

0.88

0.89

(a) (b)

Figure 3.12: The log marginal likelihood, panel (a), and test information, panel
(b), for the USPS 3’s vs. 5’s binary classification task computed using Markov chain
Monte Carlo (MCMC). Comparing this to the Laplace approximation Figure 3.7 and
Figure 3.8 shows that the EP approximation is surprisingly accurate. The slight
wiggliness of the contour lines are caused by finite sample effects in the MCMC runs.

is a combination of the (correlated) Gaussian prior centered on the origin and
the likelihood terms which (softly) cut off half-spaces which do not agree with
the training set labels. Therefore the posterior looks like a correlated Gaussian
restricted to the orthant which agrees with the labels. Its mode will be located
close to the origin in that orthant, and it will decrease rapidly in the direction
towards the origin due to conflicts from the likelihood terms, and decrease only
slowly in the opposite direction (because of the prior). Seen in this light it is
not surprising that the Laplace approximation is somewhat inaccurate. This
explanation is corroborated further by Kuss and Rasmussen [2005].

It should be noted that all the methods compared on the binary digits clas-
sification task except for the linear probit model are using the squared distance
between the digitized digit images measured directly in the image space as the suitablility of the

covariance functionsole input to the algorithm. This distance measure is not very well suited for
the digit discrimination task—for example, two similar images that are slight
translations of each other may have a huge squared distance, although of course
identical labels. One of the strengths of the GP formalism is that one can use
prior distributions over (latent, in this case) functions, and do inference based
on these. If however, the prior over functions depends only on one particular as-
pect of the data (the squared distance in image space) which is not so well suited
for discrimination, then the prior used is also not very appropriate. It would be
more interesting to design covariance functions (parameterized by hyperparame-
ters) which are more appropriate for the digit discrimination task, e.g. reflecting
on the known invariances in the images, such as the “tangent-distance” ideas
from Simard et al. [1992]; see also Schölkopf and Smola [2002, ch. 11] and section
9.10. The results shown here follow the common approach of using a generic

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

74 Classification

covariance function with a minimum of hyperparameters, but this doesn’t allow
us to incorporate much prior information about the problem. For an example
in the GP framework for doing inference about multiple hyperparameters with
more complex covariance functions which provide clearly interpretable infor-
mation about the data, see the carbon dioxide modelling problem discussed on
page 118.

3.9 Appendix: Moment Derivations∗

Consider the integral of a cumulative Gaussian, Φ, with respect to a Gaussian

Z =
∫ ∞

−∞
Φ
(x−m

v

)
N (x|µ, σ2) dx, where Φ(x) =

∫ x

−∞
N (y) dy, (3.77)

initially for the special case v>0. Writing out in full, substituting z = y − x+
µ−m and w = x− µ and interchanging the order of the integrals

Zv>0 =
1

2πσv

∫ ∞

−∞

∫ x

−∞
exp

(
− (y −m)2

2v2
− (x− µ)2

2σ2

)
dy dx

=
1

2πσv

∫ µ−m

−∞

∫ ∞

−∞
exp

(
− (z + w)2

2v2
− w2

2σ2

)
dw dz,

(3.78)

or in matrix notation

Zv>0 =
1

2πσv

∫ µ−m

−∞

∫ ∞

−∞
exp

(
− 1

2

[
w
z

]> [1
v2 + 1

σ2
1
v2

1
v2

1
v2

] [
w
z

])
dw dz

=
∫ µ−m

−∞

∫ ∞

−∞
N
([
w
z

]∣∣∣ 0, [σ2 −σ2

−σ2 v2 + σ2

])
dw dz, (3.79)

i.e. an (incomplete) integral over a joint Gaussian. The inner integral corre-
sponds to marginalizing over w (see eq. (A.6)), yielding

Zv>0 =
1√

2π(v2 + σ2)

∫ µ−m

−∞
exp

(
− z2

2(v2 + σ2)

)
dz = Φ

(µ−m√
v2 + σ2

)
,

(3.80)
which assumed v > 0. If v is negative, we can substitute the symmetry Φ(−z) =
1− Φ(z) into eq. (3.77) to get

Zv<0 = 1− Φ
(µ−m√

v2 + σ2

)
= Φ

(
− µ−m√

v2 + σ2

)
. (3.81)

Collecting the two cases, eq. (3.80) and eq. (3.81) we arrive at

Z =
∫

Φ
(x−m

v

)
N (x|µ, σ2) dx = Φ(z), where z =

µ−m
v
√

1 + σ2/v2
, (3.82)

for general v 6= 0. We wish to compute the moments of

q(x) = Z−1Φ
(x−m

v

)
N (x|µ, σ2), (3.83)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.10 Exercises 75

where Z is given in eq. (3.82). Perhaps the easiest way to do this is to differ-
entiate w.r.t. µ on both sides of eq. (3.82)

∂Z

∂µ
=
∫
x− µ
σ2

Φ
(x−m

v

)
N (x|µ, σ2) dx =

∂

∂µ
Φ(z) ⇐⇒ (3.84)

1
σ2

∫
xΦ
(x−m

v

)
N (x|µ, σ2) dx− µZ

σ2
=

N (z)

v
√

1 + σ2/v2
,

where we have used ∂Φ(z)/∂µ = N (z)∂z/∂µ. We recognize the first term in
the integral in the top line of eq. (3.84) as Z/σ2 times the first moment of q
which we are seeking. Multiplying through by σ2/Z and rearranging we obtain first moment

Eq[x] = µ+
σ2N (z)

Φ(z)v
√

1 + σ2/v2
. (3.85)

Similarly, the second moment can be obtained by differentiating eq. (3.82) twice

∂2Z

∂µ2
=
∫ [x2

σ4
− 2µx

σ4
+
µ2

σ4
− 1
σ2

]
Φ
(x−m

v

)
N (x|µ, σ2) dx = − zN (z)

v2 + σ2

⇐⇒ Eq[x2] = 2µEq[x]− µ2 + σ2 − σ4zN (z)
Φ(z)(v2 + σ2)

, (3.86)

where the first and second terms of the integral in the top line of eq. (3.86) are
multiples of the first and second moments. The second central moment after
reintroducing eq. (3.85) into eq. (3.86) and simplifying is given by second moment

Eq

[
(x−Eq[x])2

]
= Eq[x2]−Eq[x]2 = σ2− σ4N (z)

(v2 + σ2)Φ(z)

(
z+
N (z)
Φ(z)

)
. (3.87)

3.10 Exercises

1. For binary GPC, show the equivalence of using a noise-free latent process
combined with a probit likelihood and a latent process with Gaussian
noise combined with a step-function likelihood. Hint: introduce explicitly
additional noisy latent variables f̃i, which differ from fi by Gaussian noise.
Write down the step function likelihood for a single case as a function of
f̃i, integrate out the noisy variable, to arrive at the probit likelihood as a
function of the noise-free process.

2. Consider a multinomial random variable y having C states, with yc = 1 if
the variable is in state c, and 0 otherwise. State c occurs with probability
πc. Show that cov(y) = E[(y − π)(y − π)>] = diag(π) − ππ>. Ob-
serve that cov(y), being a covariance matrix, must necessarily be positive
semidefinite. Using this fact show that the matrix W = diag(π) − ΠΠ>

from eq. (3.38) is positive semidefinite. By showing that the vector of all
ones is an eigenvector of cov(y) with eigenvalue zero, verify that the ma-
trix is indeed positive semidefinite, and not positive definite. (See section
4.1 for definitions of positive semidefinite and positive definite matrices.)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

76 Classification

R
1

R
2

R
3

−3 0 3

−3

0

3

z
2

z
3

Figure 3.13: The decision regions for the three-class softmax function in z2-z3 space.

3. Consider the 3-class softmax function

p(Cc) =
exp(fc)

exp(f1) + exp(f2) + exp(f3)
,

where c = 1, 2, 3 and f1, f2, f3 are the corresponding activations. To
more easily visualize the decision boundaries, let z2 = f2 − f1 and z3 =
f3 − f1. Thus

p(C1) =
1

1 + exp(z2) + exp(z3)
, (3.88)

and similarly for the other classes. The decision boundary relating to
p(C1) > 1/3 is the curve exp(z2) + exp(z3) = 2. The decision regions for
the three classes are illustrated in Figure 3.13. Let f = (f1, f2, f3)> have
a Gaussian distribution centered on the origin, and let π(f) = softmax(f).
We now consider the effect of this distribution on π̄ =

∫
π(f)p(f) df . For

a Gaussian with given covariance structure this integral is easily approxi-
mated by drawing samples from p(f). Show that the classification can be
made to fall into any of the three categories depending on the covariance
matrix. Thus, by considering displacements of the mean of the Gaussian
by ε from the origin into each of the three regions we have shown that
overall classification depends not only on the mean of the Gaussian but
also on its covariance. Show that this conclusion is still valid when it is
recalled that z is derived from f as z = T f where

T =
(

1 0 −1
0 1 −1

)
,

so that cov(z) = T cov(f)T>.

4. Consider the update equation for fnew given by eq. (3.18) when some of
the training points are well-explained under f so that ti ' πi and Wii ' 0

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

3.10 Exercises 77

for these points. Break f into two subvectors, f1 that corresponds to
points that are not well-explained, and f2 to those that are. Re-write
(K−1 +W)−1 from eq. (3.18) as K(I +WK)−1 and let K be partitioned
as K11, K12, K21, K22 and similarly for the other matrices. Using the
partitioned matrix inverse equations (see section A.3) show that

fnew
1 = K11(I11 +W11K11)−1

(
W11f1 +∇ log p(y1|f1)

)
,

fnew
2 = K21K

−1
11 fnew

1 .
(3.89)

See section 3.4.1 for the consequences of this result.

5. Show that the expressions in eq. (3.56) for the cavity mean µ−i and vari-
ance σ2

−i do not depend on the approximate likelihood terms µ̃i and σ̃2
i

for the corresponding case, despite the appearance of eq. (3.56).

6. Consider the USPS 3s vs. 5s prediction problem discussed in section 3.7.3.
Use the implementation of the Laplace binary GPC provided to investi-
gate how f̂ and the predictive probabilities etc. vary as functions of log(`)
and log(σf).

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Chapter 4

Covariance Functions

We have seen that a covariance function is the crucial ingredient in a Gaussian
process predictor, as it encodes our assumptions about the function which we
wish to learn. From a slightly different viewpoint it is clear that in supervised
learning the notion of similarity between data points is crucial; it is a basic similarity

assumption that points with inputs x which are close are likely to have similar
target values y, and thus training points that are near to a test point should
be informative about the prediction at that point. Under the Gaussian process
view it is the covariance function that defines nearness or similarity.

An arbitrary function of input pairs x and x′ will not, in general, be a valid valid covariance
functionscovariance function.1 The purpose of this chapter is to give examples of some

commonly-used covariance functions and to examine their properties. Section
4.1 defines a number of basic terms relating to covariance functions. Section 4.2
gives examples of stationary, dot-product, and other non-stationary covariance
functions, and also gives some ways to make new ones from old. Section 4.3
introduces the important topic of eigenfunction analysis of covariance functions,
and states Mercer’s theorem which allows us to express the covariance function
(under certain conditions) in terms of its eigenfunctions and eigenvalues. The
covariance functions given in section 4.2 are valid when the input domain X is
a subset of RD. In section 4.4 we describe ways to define covariance functions
when the input domain is over structured objects such as strings and trees.

4.1 Preliminaries

A stationary covariance function is a function of x − x′. Thus it is invariant stationarity

to translations in the input space.2 For example the squared exponential co-
1To be a valid covariance function it must be positive semidefinite, see eq. (4.2).
2In stochastic process theory a process which has constant mean and whose covariance

function is invariant to translations is called weakly stationary. A process is strictly sta-
tionary if all of its finite dimensional distributions are invariant to translations [Papoulis,
1991, sec. 10.1].

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

80 Covariance Functions

variance function given in equation 2.16 is stationary. If further the covariance
function is a function only of |x − x′| then it is called isotropic; it is thus in-isotropy

variant to all rigid motions. For example the squared exponential covariance
function given in equation 2.16 is isotropic. As k is now only a function of
r = |x− x′| these are also known as radial basis functions (RBFs).

If a covariance function depends only on x and x′ through x · x′ we call itdot product covariance

a dot product covariance function. A simple example is the covariance function
k(x,x′) = σ2

0 + x · x′ which can be obtained from linear regression by putting
N (0, 1) priors on the coefficients of xd (d = 1, . . . , D) and a prior of N (0, σ2

0)
on the bias (or constant function) 1, see eq. (2.15). Another important example
is the inhomogeneous polynomial kernel k(x,x′) = (σ2

0 + x · x′)p where p is a
positive integer. Dot product covariance functions are invariant to a rotation
of the coordinates about the origin, but not translations.

A general name for a function k of two arguments mapping a pair of inputskernel

x ∈ X , x′ ∈ X into R is a kernel. This term arises in the theory of integral
operators, where the operator Tk is defined as

(Tkf)(x) =
∫
X
k(x,x′)f(x′) dµ(x′), (4.1)

where µ denotes a measure; see section A.7 for further explanation of this point.3

A real kernel is said to be symmetric if k(x,x′) = k(x′,x); clearly covariance
functions must be symmetric from the definition.

Given a set of input points {xi|i = 1, . . . , n} we can compute the Gram
matrix K whose entries are Kij = k(xi,xj). If k is a covariance function weGram matrix

call the matrix K the covariance matrix.covariance matrix

A real n × n matrix K which satisfies Q(v) = v>Kv ≥ 0 for all vectors
v ∈ Rn is called positive semidefinite (PSD). If Q(v) = 0 only when v = 0positive semidefinite

the matrix is positive definite. Q(v) is called a quadratic form. A symmetric
matrix is PSD if and only if all of its eigenvalues are non-negative. A Gram
matrix corresponding to a general kernel function need not be PSD, but the
Gram matrix corresponding to a covariance function is PSD.

A kernel is said to be positive semidefinite if∫
k(x,x′)f(x)f(x′) dµ(x) dµ(x′) ≥ 0, (4.2)

for all f ∈ L2(X , µ). Equivalently a kernel function which gives rise to PSD
Gram matrices for any choice of n ∈ N and D is positive semidefinite. To
see this let f be the weighted sum of delta functions at each xi. Since such
functions are limits of functions in L2(X , µ) eq. (4.2) implies that the Gram
matrix corresponding to any D is PSD.

For a one-dimensional Gaussian process one way to understand the charac-
teristic length-scale of the process (if this exists) is in terms of the number ofupcrossing rate

upcrossings of a level u. Adler [1981, Theorem 4.1.1] states that the expected

3Informally speaking, readers will usually be able to substitute dx or p(x)dx for dµ(x).

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 81

number of upcrossings E[Nu] of the level u on the unit interval by a zero-mean,
stationary, almost surely continuous Gaussian process is given by

E[Nu] =
1
2π

√
−k′′(0)
k(0)

exp
(
− u2

2k(0)

)
. (4.3)

If k′′(0) does not exist (so that the process is not mean square differentiable)
then if such a process has a zero at x0 then it will almost surely have an infinite
number of zeros in the arbitrarily small interval (x0, x0 +δ) [Blake and Lindsey,
1973, p. 303].

4.1.1 Mean Square Continuity and Differentiability ∗

We now describe mean square continuity and differentiability of stochastic pro-
cesses, following Adler [1981, sec. 2.2]. Let x1,x2, . . . be a sequence of points
and x∗ be a fixed point in RD such that |xk − x∗| → 0 as k → ∞. Then a
process f(x) is continuous in mean square at x∗ if E[|f(xk) − f(x∗)|2] → 0 as mean square continuity

k →∞. If this holds for all x∗ ∈ A where A is a subset of RD then f(x) is said
to be continuous in mean square (MS) over A. A random field is continuous in
mean square at x∗ if and only if its covariance function k(x,x′) is continuous
at the point x = x′ = x∗. For stationary covariance functions this reduces
to checking continuity at k(0). Note that MS continuity does not necessarily
imply sample function continuity; for a discussion of sample function continuity
and differentiability see Adler [1981, ch. 3].

The mean square derivative of f(x) in the ith direction is defined as

∂f(x)
∂xi

= l. i.m
h→0

f(x + hei)− f(x)
h

, (4.4)

when the limit exists, where l.i.m denotes the limit in mean square and ei mean square
differentiabilityis the unit vector in the ith direction. The covariance function of ∂f(x)/∂xi

is given by ∂2k(x,x′)/∂xi∂x
′
i. These definitions can be extended to higher

order derivatives. For stationary processes, if the 2kth-order partial derivative
∂2kk(x)/∂2xi1 . . . ∂

2xik
exists and is finite at x = 0 then the kth order partial

derivative ∂kf(x)/∂xi1 . . . xik
exists for all x ∈ RD as a mean square limit.

Notice that it is the properties of the kernel k around 0 that determine the
smoothness properties (MS differentiability) of a stationary process.

4.2 Examples of Covariance Functions

In this section we consider covariance functions where the input domain X is
a subset of the vector space RD. More general input spaces are considered in
section 4.4. We start in section 4.2.1 with stationary covariance functions, then
consider dot-product covariance functions in section 4.2.2 and other varieties
of non-stationary covariance functions in section 4.2.3. We give an overview
of some commonly used covariance functions in Table 4.1 and in section 4.2.4

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

82 Covariance Functions

we describe general methods for constructing new kernels from old. There
exist several other good overviews of covariance functions, see e.g. Abrahamsen
[1997].

4.2.1 Stationary Covariance Functions

In this section (and section 4.3) it will be convenient to allow kernels to be a map
from x ∈ X , x′ ∈ X into C (rather than R). If a zero-mean process f is complex-
valued, then the covariance function is defined as k(x,x′) = E[f(x)f∗(x′)],
where ∗ denotes complex conjugation.

A stationary covariance function is a function of τ = x− x′. Sometimes in
this case we will write k as a function of a single argument, i.e. k(τ).

The covariance function of a stationary process can be represented as the
Fourier transform of a positive finite measure.

Theorem 4.1 (Bochner’s theorem) A complex-valued function k on RD is theBochner’s theorem

covariance function of a weakly stationary mean square continuous complex-
valued random process on RD if and only if it can be represented as

k(τ) =
∫

RD

e2πis·τ dµ(s) (4.5)

where µ is a positive finite measure. �

The statement of Bochner’s theorem is quoted from Stein [1999, p. 24]; a proof
can be found in Gihman and Skorohod [1974, p. 208]. If µ has a density S(s)spectral density

power spectrum then S is known as the spectral density or power spectrum corresponding to k.

The construction given by eq. (4.5) puts non-negative power into each fre-
quency s; this is analogous to the requirement that the prior covariance matrix
Σp on the weights in equation 2.4 be non-negative definite.

In the case that the spectral density S(s) exists, the covariance function and
the spectral density are Fourier duals of each other as shown in eq. (4.6);4 this
is known as the Wiener-Khintchine theorem, see, e.g. Chatfield [1989]

k(τ) =
∫
S(s)e2πis·τ ds, S(s) =

∫
k(τ)e−2πis·τ dτ . (4.6)

Notice that the variance of the process is k(0) =
∫
S(s) ds so the power spectrum

must be integrable to define a valid Gaussian process.

To gain some intuition for the definition of the power spectrum given in
eq. (4.6) it is important to realize that the complex exponentials e2πis·x are
eigenfunctions of a stationary kernel with respect to Lebesgue measure (see
section 4.3 for further details). Thus S(s) is, loosely speaking, the amount of
power allocated on average to the eigenfunction e2πis·x with frequency s. S(s)
must eventually decay sufficiently fast as |s| → ∞ so that it is integrable; the

4See Appendix A.8 for details of Fourier transforms.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 83

rate of this decay of the power spectrum gives important information about
the smoothness of the associated stochastic process. For example it can deter-
mine the mean-square differentiability of the process (see section 4.3 for further
details).

If the covariance function is isotropic (so that it is a function of r, where
r = |τ |) then it can be shown that S(s) is a function of s , |s| only [Adler,
1981, Theorem 2.5.2]. In this case the integrals in eq. (4.6) can be simplified
by changing to spherical polar coordinates and integrating out the angular
variables (see e.g. Bracewell, 1986, ch. 12) to obtain

k(r) =
2π

rD/2−1

∫ ∞

0

S(s)JD/2−1(2πrs)sD/2 ds, (4.7)

S(s) =
2π

sD/2−1

∫ ∞

0

k(r)JD/2−1(2πrs)rD/2 dr, (4.8)

where JD/2−1 is a Bessel function of orderD/2−1. Note that the dependence on
the dimensionality D in equation 4.7 means that the same isotropic functional
form of the spectral density can give rise to different isotropic covariance func-
tions in different dimensions. Similarly, if we start with a particular isotropic
covariance function k(r) the form of spectral density will in general depend on
D (see, e.g. the Matérn class spectral density given in eq. (4.15)) and in fact
k(r) may not be valid for all D. A necessary condition for the spectral density
to exist is that

∫
rD−1|k(r)| dr <∞; see Stein [1999, sec. 2.10] for more details.

We now give some examples of commonly-used isotropic covariance func-
tions. The covariance functions are given in a normalized form where k(0) = 1;
we can multiply k by a (positive) constant σ2

f to get any desired process vari-
ance.

Squared Exponential Covariance Function

The squared exponential (SE) covariance function has already been introduced squared exponential

in chapter 2, eq. (2.16) and has the form

kSE(r) = exp
(
− r2

2`2
)
, (4.9)

with parameter ` defining the characteristic length-scale. Using eq. (4.3) we characteristic
length-scalesee that the mean number of level-zero upcrossings for a SE process in 1-

d is (2π`)−1, which confirms the rôle of ` as a length-scale. This covari-
ance function is infinitely differentiable, which means that the GP with this
covariance function has mean square derivatives of all orders, and is thus
very smooth. The spectral density of the SE covariance function is S(s) =
(2π`2)D/2 exp(−2π2`2s2). Stein [1999] argues that such strong smoothness
assumptions are unrealistic for modelling many physical processes, and rec-
ommends the Matérn class (see below). However, the squared exponential is
probably the most widely-used kernel within the kernel machines field.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

84 Covariance Functions

The SE kernel is infinitely divisible in that (k(r))t is a valid kernel for allinfinitely divisible

t > 0; the effect of raising k to the power of t is simply to rescale `.

We now digress briefly, to show that the squared exponential covariance
function can also be obtained by expanding the input x into a feature space
defined by Gaussian-shaped basis functions centered densely in x-space. Forinfinite network

construction for SE
covariance function

simplicity of exposition we consider scalar inputs with basis functions

φc(x) = exp
(
− (x− c)2

2`2
)
, (4.10)

where c denotes the centre of the basis function. From sections 2.1 and 2.2 we
recall that with a Gaussian prior on the weights w ∼ N (0, σ2

pI), this gives rise
to a GP with covariance function

k(xp, xq) = σ2
p

N∑
c=1

φc(xp)φc(xq). (4.11)

Now, allowing an infinite number of basis functions centered everywhere on an
interval (and scaling down the variance of the prior on the weights with the
number of basis functions) we obtain the limit

lim
N→∞

σ2
p

N

N∑
c=1

φc(xp)φc(xq) = σ2
p

∫ cmax

cmin

φc(xp)φc(xq)dc. (4.12)

Plugging in the Gaussian-shaped basis functions eq. (4.10) and letting the in-
tegration limits go to infinity we obtain

k(xp, xq) = σ2
p

∫ ∞

−∞
exp

(
− (xp − c)2

2`2
)
exp

(
− (xq − c)2

2`2
)
dc

=
√
π`σ2

p exp
(
− (xp − xq)2

2(
√

2`)2
)
,

(4.13)

which we recognize as a squared exponential covariance function with a
√

2
times longer length-scale. The derivation is adapted from MacKay [1998]. It
is straightforward to generalize this construction to multivariate x. See also
eq. (4.30) for a similar construction where the centres of the basis functions are
sampled from a Gaussian distribution; the constructions are equivalent when
the variance of this Gaussian tends to infinity.

The Matérn Class of Covariance Functions

The Matérn class of covariance functions is given byMatérn class

kMatern(r) =
21−ν

Γ(ν)

(√2νr
`

)ν

Kν

(√2νr
`

)
, (4.14)

with positive parameters ν and `, where Kν is a modified Bessel function
[Abramowitz and Stegun, 1965, sec. 9.6]. This covariance function has a spectral
density

S(s) =
2DπD/2Γ(ν +D/2)(2ν)ν

Γ(ν)`2ν

(2ν
`2

+ 4π2s2
)−(ν+D/2)

(4.15)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 85

0 1 2 3
0

0.2

0.4

0.6

0.8

1

input distance, r

co
va

ria
nc

e,
 k

(r
)

ν=1/2
ν=2
ν→∞

−5 0 5

−2

0

2

input, x
ou

tp
ut

, f
(x

)

(a) (b)

Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for different values of
ν, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ν →∞ we obtain
the SE covariance function e−r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS differentiable if and only if ν > k. The Matérn covariance
functions become especially simple when ν is half-integer: ν = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving

kν=p+1/2(r) = exp
(
−
√

2νr
`

) Γ(p+ 1)
Γ(2p+ 1)

p∑
i=0

(p+ i)!
i!(p− i)!

(√8νr
`

)p−i

. (4.16)

It is possible that the most interesting cases for machine learning are ν = 3/2
and ν = 5/2, for which

kν=3/2(r) =
(
1 +
√

3r
`

)
exp

(
−
√

3r
`

)
,

kν=5/2(r) =
(
1 +
√

5r
`

+
5r2

3`2
)

exp
(
−
√

5r
`

)
,

(4.17)

since for ν = 1/2 the process becomes very rough (see below), and for ν ≥ 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ν ≥ 7/2 (or even to distinguish between finite
values of ν and ν → ∞, the smooth squared exponential, in this case). For
example a value of ν = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ν = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(−r/`). The corresponding process

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

86 Covariance Functions

0 1 2 3
0

0.2

0.4

0.6

0.8

1

input distance

co
va

ria
nc

e

γ=1
γ=1.5
γ=2

−5 0 5
−3

−2

−1

0

1

2

3

input, x

ou
tp

ut
, f

(x
)

(a) (b)

Figure 4.2: Panel (a) covariance functions, and (b) random functions drawn from
Gaussian processes with the γ-exponential covariance function eq. (4.18), for different
values of γ, with ` = 1. The sample functions are only differentiable when γ = 2 (the
SE case). The sample functions on the right were obtained using a discretization of
the x-axis of 2000 equally-spaced points.

is MS continuous but not MS differentiable. In D = 1 this is the covariance
function of the Ornstein-Uhlenbeck (OU) process. The OU process [UhlenbeckOrnstein-Uhlenbeck

process and Ornstein, 1930] was introduced as a mathematical model of the velocity
of a particle undergoing Brownian motion. More generally in D = 1 setting
ν + 1/2 = p for integer p gives rise to a particular form of a continuous-time
AR(p) Gaussian process; for further details see section B.2.1. The form of the
Matérn covariance function and samples drawn from it for ν = 1/2, ν = 2 and
ν →∞ are illustrated in Figure 4.1.

The γ-exponential Covariance Function

The γ-exponential family of covariance functions, which includes both the ex-γ-exponential

ponential and squared exponential, is given by

k(r) = exp
(
− (r/`)γ

)
for 0 < γ ≤ 2. (4.18)

Although this function has a similar number of parameters to the Matérn class,
it is (as Stein [1999] notes) in a sense less flexible. This is because the corre-
sponding process is not MS differentiable except when γ = 2 (when it is in-
finitely MS differentiable). The covariance function and random samples from
the process are shown in Figure 4.2. A proof of the positive definiteness of this
covariance function can be found in Schoenberg [1938].

Rational Quadratic Covariance Function

The rational quadratic (RQ) covariance functionrational quadratic

kRQ(r) =
(
1 +

r2

2α`2
)−α

(4.19)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 87

0 1 2 3
0

0.2

0.4

0.6

0.8

1

input distance

co
va

ria
nc

e

α=1/2
α=2
α→∞

−5 0 5
−3

−2

−1

0

1

2

3

input, x
ou

tp
ut

, f
(x

)

(a) (b)

Figure 4.3: Panel (a) covariance functions, and (b) random functions drawn from
Gaussian processes with rational quadratic covariance functions, eq. (4.20), for differ-
ent values of α with ` = 1. The sample functions on the right were obtained using a
discretization of the x-axis of 2000 equally-spaced points.

with α, ` > 0 can be seen as a scale mixture (an infinite sum) of squared scale mixture

exponential (SE) covariance functions with different characteristic length-scales
(sums of covariance functions are also a valid covariance, see section 4.2.4).
Parameterizing now in terms of inverse squared length scales, τ = `−2, and
putting a gamma distribution on p(τ |α, β) ∝ τα−1 exp(−ατ/β),5 we can add
up the contributions through the following integral

kRQ(r) =
∫
p(τ |α, β)kSE(r|τ) dτ

∝
∫
τα−1 exp

(
− ατ

β

)
exp

(
− τr2

2

)
dτ ∝

(
1 +

r2

2α`2
)−α

,

(4.20)

where we have set β−1 = `2. The rational quadratic is also discussed by Matérn
[1960, p. 17] using a slightly different parameterization; in our notation the limit
of the RQ covariance for α→∞ (see eq. (A.25)) is the SE covariance function
with characteristic length-scale `, eq. (4.9). Figure 4.3 illustrates the behaviour
for different values of α; note that the process is infinitely MS differentiable for
every α in contrast to the Matérn covariance function in Figure 4.1.

The previous example is a special case of kernels which can be written as
superpositions of SE kernels with a distribution p(`) of length-scales `, k(r) =∫

exp(−r2/2`2)p(`) d`. This is in fact the most general representation for an
isotropic kernel which defines a valid covariance function in any dimension D,
see [Stein, 1999, sec. 2.10].

Piecewise Polynomial Covariance Functions with Compact Support

A family of piecewise polynomial functions with compact support provide an- piecewise polynomial
covariance functions

with compact support
other interesting class of covariance functions. Compact support means that

5 Note that there are several common ways to parameterize the Gamma distribution—our
choice is convenient here: α is the “shape” and β is the mean.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

88 Covariance Functions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

input distance, r

co
va

ria
nc

e,
 k

(r
)

D=1, q=1
D=3, q=1
D=1, q=2

−2 −1 0 1 2

−2

0

2

input, x

ou
tp

ut
, f

(x
)

(a) (b)

Figure 4.4: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with piecewise polynomial covariance functions with compact sup-
port from eq. (4.21), with specified parameters.

the covariance between points become exactly zero when their distance exceeds
a certain threshold. This means that the covariance matrix will become sparse
by construction, leading to the possibility of computational advantages.6 The
challenge in designing these functions is how to guarantee positive definite-positive definiteness

ness. Multiple algorithms for deriving such covariance functions are discussed
by Wendland [2005, ch. 9]. These functions are usually not positive definite
for all input dimensions, but their validity is restricted up to some maximumrestricted dimension

dimension D. Below we give examples of covariance functions kppD,q(r) which
are positive definite in RD

kppD,0(r) = (1− r)j
+, where j = bD

2 c+ q + 1,

kppD,1(r) = (1− r)j+1
+

(
(j + 1)r + 1

)
,

kppD,2(r) = (1− r)j+2
+

(
(j2 + 4j + 3)r2 + (3j + 6)r + 3

)
/3,

kppD,3(r) = (1− r)j+3
+

(
(j3 + 9j2 + 23j + 15)r3+

(6j2 + 36j + 45)r2 + (15j + 45)r + 15
)
/15.

(4.21)

The properties of three of these covariance functions are illustrated in Fig-
ure 4.4. These covariance functions are 2q-times continuously differentiable,
and thus the corresponding processes are q-times mean-square differentiable,
see section 4.1.1. It is interesting to ask to what extent one could use the
compactly-supported covariance functions described above in place of the other
covariance functions mentioned in this section, while obtaining inferences that
are similar. One advantage of the compact support is that it gives rise to spar-
sity of the Gram matrix which could be exploited, for example, when using
iterative solutions to GPR problem, see section 8.3.6.

6If the product of the inverse covariance matrix with a vector (needed e.g. for prediction)
is computed using a conjugate gradient algorithm, then products of the covariance matrix
with vectors are the basic computational unit, and these can obviously be carried out much
faster if the matrix is sparse.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 89

Further Properties of Stationary Covariance Functions

The covariance functions given above decay monotonically with r and are always
positive. However, this is not a necessary condition for a covariance function.
For example Yaglom [1987] shows that k(r) = c(αr)−νJν(αr) is a valid covari-
ance function for ν ≥ (D − 2)/2 and α > 0; this function has the form of a
damped oscillation.

Anisotropic versions of these isotropic covariance functions can be created anisotropy

by setting r2(x,x′) = (x − x′)>M(x − x′) for some positive semidefinite M .
If M is diagonal this implements the use of different length-scales on different
dimensions—for further discussion of automatic relevance determination see
section 5.1. General M ’s have been considered by Matérn [1960, p. 19], Poggio
and Girosi [1990] and also in Vivarelli and Williams [1999]; in the latter work a
low-rank M was used to implement a linear dimensionality reduction step from
the input space to lower-dimensional feature space. More generally, one could
assume the form

M = ΛΛ> + Ψ (4.22)

where Λ is a D× k matrix whose columns define k directions of high relevance,
and Ψ is a diagonal matrix (with positive entries), capturing the (usual) axis-
aligned relevances, see also Figure 5.1 on page 107. ThusM has a factor analysis factor analysis distance

form. For appropriate choices of k this may represent a good trade-off between
flexibility and required number of parameters.

Stationary kernels can also be defined on a periodic domain, and can be
readily constructed from stationary kernels on R. Given a stationary kernel
k(x), the kernel kT(x) =

∑
m∈Z k(x+ml) is periodic with period l, as shown in periodization

section B.2.2 and Schölkopf and Smola [2002, eq. 4.42].

4.2.2 Dot Product Covariance Functions

As we have already mentioned above the kernel k(x,x′) = σ2
0 + x · x′ can

be obtained from linear regression. If σ2
0 = 0 we call this the homogeneous

linear kernel, otherwise it is inhomogeneous. Of course this can be generalized
to k(x,x′) = σ2

0 + x>Σpx′ by using a general covariance matrix Σp on the
components of x, as described in eq. (2.4).7 It is also the case that k(x,x′) =
(σ2

0 + x>Σpx′)p is a valid covariance function for positive integer p, because of
the general result that a positive-integer power of a given covariance function is
also a valid covariance function, as described in section 4.2.4. However, it is also
interesting to show an explicit feature space construction for the polynomial
covariance function. We consider the homogeneous polynomial case as the
inhomogeneous case can simply be obtained by considering x to be extended

7Indeed the bias term could also be included in the general expression.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

90 Covariance Functions

by concatenating a constant. We write

k(x,x′) = (x · x′)p =
(D∑

d=1

xdx
′
d

)p

=
(D∑

d1=1

xd1x
′
d1

)
· · ·
(D∑

dp=1

xdp
x′dp

)

=
D∑

d1=1

· · ·
D∑

dp=1

(xd1 · · ·xdp
)(x′d1

· · ·x′dp
) , φ(x) · φ(x′). (4.23)

Notice that this sum apparently contains Dp terms but in fact it is less than this
as the order of the indices in the monomial xd1 · · ·xdp

is unimportant, e.g. for
p = 2, x1x2 and x2x1 are the same monomial. We can remove the redundancy
by defining a vector m whose entry md specifies the number of times index
d appears in the monomial, under the constraint that

∑D
i=1mi = p. Thus

φm(x), the feature corresponding to vector m is proportional to the monomial
xm1

1 . . . xmD

D . The degeneracy of φm(x) is p!
m1!...mD! (where as usual we define

0! = 1), giving the feature map

φm(x) =
√

p!
m1! · · ·mD!

xm1
1 · · ·x

mD

D . (4.24)

For example, for p = 2 in D = 2, we have φ(x) = (x2
1, x

2
2,
√

2x1x2)>. Dot-
product kernels are sometimes used in a normalized form given by eq. (4.35).

For regression problems the polynomial kernel is a rather strange choice as
the prior variance grows rapidly with |x| for |x| > 1. However, such kernels
have proved effective in high-dimensional classification problems (e.g. take x
to be a vectorized binary image) where the input data are binary or greyscale
normalized to [−1, 1] on each dimension [Schölkopf and Smola, 2002, sec. 7.8].

4.2.3 Other Non-stationary Covariance Functions

Above we have seen examples of non-stationary dot product kernels. However,
there are also other interesting kernels which are not of this form. In this section
we first describe the covariance function belonging to a particular type of neural
network; this construction is due to Neal [1996].

Consider a network which takes an input x, has one hidden layer with NH

units and then linearly combines the outputs of the hidden units with a bias b
to obtain f(x). The mapping can be written

f(x) = b+
NH∑
j=1

vjh(x;uj), (4.25)

where the vjs are the hidden-to-output weights and h(x;u) is the hidden unit
transfer function (which we shall assume is bounded) which depends on the
input-to-hidden weights u. For example, we could choose h(x;u) = tanh(x ·u).
This architecture is important because it has been shown by Hornik [1993] that
networks with one hidden layer are universal approximators as the number of

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 91

hidden units tends to infinity, for a wide class of transfer functions (but exclud-
ing polynomials). Let b and the v’s have independent zero-mean distributions
of variance σ2

b and σ2
v , respectively, and let the weights uj for each hidden unit

be independently and identically distributed. Denoting all weights by w, we
obtain (following Neal [1996])

Ew[f(x)] = 0 (4.26)

Ew[f(x)f(x′)] = σ2
b +

∑
j

σ2
vEu[h(x;uj)h(x′;uj)] (4.27)

= σ2
b +NHσ

2
vEu[h(x;u)h(x′;u)], (4.28)

where eq. (4.28) follows because all of the hidden units are identically dis-
tributed. The final term in equation 4.28 becomes ω2Eu[h(x;u)h(x′;u)] by
letting σ2

v scale as ω2/NH .

The sum in eq. (4.27) is over NH identically and independently distributed
random variables. As the transfer function is bounded, all moments of the
distribution will be bounded and hence the central limit theorem can be applied,
showing that the stochastic process will converge to a Gaussian process in the
limit as NH →∞.

By evaluating Eu[h(x;u)h(x′;u)] we can obtain the covariance function of
the neural network. For example if we choose the error function h(z) = erf(z) = neural network

covariance function2/
√
π
∫ z

0
e−t2 dt as the transfer function, let h(x;u) = erf(u0 +

∑D
j=1ujxj) and

choose u ∼ N (0,Σ) then we obtain [Williams, 1998]

kNN(x,x′) =
2
π

sin−1
(2x̃>Σx̃′√

(1 + 2x̃>Σx̃)(1 + 2x̃′>Σx̃′)

)
, (4.29)

where x̃ = (1, x1, . . . , xd)> is an augmented input vector. This is a true “neural
network” covariance function. The “sigmoid” kernel k(x,x′) = tanh(a+ bx ·x′)
has sometimes been proposed, but in fact this kernel is never positive defi-
nite and is thus not a valid covariance function, see, e.g. Schölkopf and Smola
[2002, p. 113]. Figure 4.5 shows a plot of the neural network covariance function
and samples from the prior. We have set Σ = diag(σ2

0 , σ
2). Samples from a GP

with this covariance function can be viewed as superpositions of the functions
erf(u0+ux), where σ2

0 controls the variance of u0 (and thus the amount of offset
of these functions from the origin), and σ2 controls u and thus the scaling on
the x-axis. In Figure 4.5(b) we observe that the sample functions with larger σ
vary more quickly. Notice that the samples display the non-stationarity of the
covariance function in that for large values of +x or −x they should tend to a
constant value, consistent with the construction as a superposition of sigmoid
functions.

Another interesting construction is to set h(x;u) = exp(−|x − u|2/2σ2
g), modulated squared

exponentialwhere σg sets the scale of this Gaussian basis function. With u ∼ N (0, σ2
uI)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

92 Covariance Functions

−4 0 4

−4

0

4

input, x

in
pu

t,
x’

−0.5

−0.5

0
0

0.5

0.5

0.95

0.95

−4 0 4

−1

0

1

input, x

ou
tp

ut
, f

(x
)

σ = 10
σ = 3
σ = 1

(a), covariance (b), sample functions

Figure 4.5: Panel (a): a plot of the covariance function kNN(x, x′) for σ0 = 10, σ = 10.
Panel (b): samples drawn from the neural network covariance function with σ0 = 2
and σ as shown in the legend. The samples were obtained using a discretization of
the x-axis of 500 equally-spaced points.

we obtain

kG(x,x′) =
1

(2πσ2
u)d/2

∫
exp

(
− |x− u|2

2σ2
g

− |x
′ − u|2

2σ2
g

− u>u
2σ2

u

)
du

=
(σe

σu

)d

exp
(
− x>x

2σ2
m

)
exp

(
− |x− x′|2

2σ2
s

)
exp

(
− x′>x′

2σ2
m

)
,

(4.30)

where 1/σ2
e = 2/σ2

g + 1/σ2
u, σ2

s = 2σ2
g + σ4

g/σ
2
u and σ2

m = 2σ2
u + σ2

g . This is
in general a non-stationary covariance function, but if σ2

u → ∞ (while scaling
ω2 appropriately) we recover the squared exponential kG(x,x′) ∝ exp(−|x −
x′|2/4σ2

g). For a finite value of σ2
u, kG(x,x′) comprises a squared exponen-

tial covariance function modulated by the Gaussian decay envelope function
exp(−x>x/2σ2

m) exp(−x′>x′/2σ2
m), cf. the vertical rescaling construction de-

scribed in section 4.2.4.

One way to introduce non-stationarity is to introduce an arbitrary non-linear
mapping (or warping) u(x) of the input x and then use a stationary covariancewarping

function in u-space. Note that x and u need not have the same dimensionality as
each other. This approach was used by Sampson and Guttorp [1992] to model
patterns of solar radiation in southwestern British Columbia using Gaussian
processes.

Another interesting example of this warping construction is given in MacKay
[1998] where the one-dimensional input variable x is mapped to the two-dimensional
u(x) = (cos(x), sin(x)) to give rise to a periodic random function of x. If weperiodic random

function use the squared exponential kernel in u-space, then

k(x, x′) = exp
(
−

2 sin2
(

x−x′

2

)
`2

)
, (4.31)

as (cos(x)− cos(x′))2 + (sin(x)− sin(x′))2 = 4 sin2(x−x′

2).

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 93

0 1 2 3 4
0

0.5

1

1.5

le
ng

th
sc

al
e

l(x
)

input, x
0 1 2 3 4

−1

0

1

input, x

ou
tp

ut
, f

(x
)

(a) (b)

Figure 4.6: Panel (a) shows the chosen length-scale function `(x). Panel (b) shows
three samples from the GP prior using Gibbs’ covariance function eq. (4.32). This
figure is based on Fig. 3.9 in Gibbs [1997].

We have described above how to make an anisotropic covariance function varying length-scale

by scaling different dimensions differently. However, we are not free to make
these length-scales `d be functions of x, as this will not in general produce a
valid covariance function. Gibbs [1997] derived the covariance function

k(x,x′) =
D∏

d=1

(2`d(x)`d(x′)
`2d(x) + `2d(x′)

)1/2

exp
(
−

D∑
d=1

(xd − x′d)2

`2d(x) + `2d(x′)

)
, (4.32)

where each `i(x) is an arbitrary positive function of x. Note that k(x,x) = 1
for all x. This covariance function is obtained by considering a grid of N
Gaussian basis functions with centres cj and a corresponding length-scale on
input dimension d which varies as a positive function `d(cj). Taking the limit
as N → ∞ the sum turns into an integral and after some algebra eq. (4.32) is
obtained.

An example of a variable length-scale function and samples from the prior
corresponding to eq. (4.32) are shown in Figure 4.6. Notice that as the length-
scale gets shorter the sample functions vary more rapidly as one would expect.
The large length-scale regions on either side of the short length-scale region can
be quite strongly correlated. If one tries the converse experiment by creating
a length-scale function `(x) which has a longer length-scale region between
two shorter ones then the behaviour may not be quite what is expected; on
initially transitioning into the long length-scale region the covariance drops off
quite sharply due to the prefactor in eq. (4.32), before stabilizing to a slower
variation. See Gibbs [1997, sec. 3.10.3] for further details. Exercises 4.5.4 and
4.5.5 invite you to investigate this further.

Paciorek and Schervish [2004] have generalized Gibbs’ construction to obtain
non-stationary versions of arbitrary isotropic covariance functions. Let kS be a

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

94 Covariance Functions

covariance function expression S ND

constant σ2
0

√

linear
∑D

d=1 σ
2
dxdx

′
d

polynomial (x · x′ + σ2
0)p

squared exponential exp(− r2

2`2)
√ √

Matérn 1
2ν−1Γ(ν)

(√
2ν
` r
)ν

Kν

(√
2ν
` r
) √ √

exponential exp(− r
`)

√ √

γ-exponential exp
(
− (r

`)γ
) √ √

rational quadratic (1 + r2

2α`2)−α √ √

neural network sin−1
(

2x̃>Σx̃′√
(1+2x̃>Σx̃)(1+2x̃′>Σx̃′)

) √

Table 4.1: Summary of several commonly-used covariance functions. The covariances
are written either as a function of x and x′, or as a function of r = |x − x′|. Two
columns marked ‘S’ and ‘ND’ indicate whether the covariance functions are stationary
and nondegenerate respectively. Degenerate covariance functions have finite rank, see
section 4.3 for more discussion of this issue.

stationary, isotropic covariance function that is valid in every Euclidean space
RD for D = 1, 2, Let Σ(x) be a D × D matrix-valued function which
is positive definite for all x, and let Σi , Σ(xi). (The set of Gibbs’ `i(x)
functions define a diagonal Σ(x).) Then define the quadratic form

Qij = (xi − xj)>((Σi + Σj)/2)−1(xi − xj). (4.33)

Paciorek and Schervish [2004] show that

kNS(xi,xj) = 2D/2|Σi|1/4|Σj |1/4|Σi + Σj |−1/2kS(
√
Qij), (4.34)

is a valid non-stationary covariance function.

In chapter 2 we described the linear regression model in feature space f(x) =
φ(x)>w. O’Hagan [1978] suggested making w a function of x to allow for
different values of w to be appropriate in different regions. Thus he put a
Gaussian process prior on w of the form cov(w(x),w(x′)) = W0kw(x,x′) for
some positive definite matrix W0, giving rise to a prior on f(x) with covariance
kf (x,x′) = φ(x)>W0φ(x′)kw(x,x′).

Finally we note that the Wiener process with covariance function k(x, x′) =
min(x, x′) is a fundamental non-stationary process. See section B.2.1 and textsWiener process

such as Grimmett and Stirzaker [1992, ch. 13] for further details.

4.2.4 Making New Kernels from Old

In the previous sections we have developed many covariance functions some of
which are summarized in Table 4.1. In this section we show how to combine or
modify existing covariance functions to make new ones.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 95

The sum of two kernels is a kernel. Proof: consider the random process sum

f(x) = f1(x) + f2(x), where f1(x) and f2(x) are independent. Then k(x,x′) =
k1(x,x′)+ k2(x,x′). This construction can be used e.g. to add together kernels
with different characteristic length-scales.

The product of two kernels is a kernel. Proof: consider the random process
f(x) = f1(x)f2(x), where f1(x) and f2(x) are independent. Then k(x,x′) = product

k1(x,x′)k2(x,x′).8 A simple extension of this argument means that kp(x,x′) is
a valid covariance function for p ∈ N.

Let a(x) be a given deterministic function and consider g(x) = a(x)f(x)
where f(x) is a random process. Then cov(g(x), g(x′)) = a(x)k(x,x′)a(x′). vertical rescaling

Such a construction can be used to normalize kernels by choosing a(x) =
k−1/2(x,x) (assuming k(x,x) > 0 ∀x), so that

k̃(x,x′) =
k(x,x′)√

k(x,x)
√
k(x′,x′)

. (4.35)

This ensures that k̃(x,x) = 1 for all x.

We can also obtain a new process by convolution (or blurring). Consider
an arbitrary fixed kernel h(x, z) and the map g(x) =

∫
h(x, z)f(z) dz. Then convolution

clearly cov(g(x), g(x′)) =
∫
h(x, z)k(z, z′)h(x′, z′) dz dz′.

If k(x1,x′1) and k(x2,x′2) are covariance functions over different spaces X1

and X2, then the direct sum k(x,x′) = k1(x1,x′1) + k2(x2,x′2) and the tensor direct sum

tensor productproduct k(x,x′) = k1(x1,x′1)k2(x2,x′2) are also covariance functions (defined
on the product space X1×X2), by virtue of the sum and product constructions.

The direct sum construction can be further generalized. Consider a func-
tion f(x), where x is D-dimensional. An additive model [Hastie and Tib-
shirani, 1990] has the form f(x) = c +

∑D
i=1fi(xi), i.e. a linear combina- additive model

tion of functions of one variable. If the individual fi’s are taken to be in-
dependent stochastic processes, then the covariance function of f will have the
form of a direct sum. If we now admit interactions of two variables, so that
f(x) = c +

∑D
i=1fi(xi) +

∑
ij,j<i fij(xi, xj) and the various fi’s and fij ’s are

independent stochastic processes, then the covariance function will have the
form k(x,x′) =

∑D
i=1ki(xi, x

′
i) +

∑D
i=2

∑i−1
j=1 kij(xi, xj ;x′i, x

′
j). Indeed this pro-

cess can be extended further to provide a functional ANOVA9 decomposition,
ranging from a simple additive model up to full interaction of all D input vari- functional ANOVA

ables. (The sum can also be truncated at some stage.) Wahba [1990, ch. 10]
and Stitson et al. [1999] suggest using tensor products for kernels with inter-
actions so that in the example above kij(xi, xj ;x′i, x

′
j) would have the form

ki(xi;x′i)kj(xj ;x′j). Note that if D is large then the large number of pairwise
(or higher-order) terms may be problematic; Plate [1999] has investigated using
a combination of additive GP models plus a general covariance function that
permits full interactions.

8If f1 and f2 are Gaussian processes then the product f will not in general be a Gaussian
process, but there exists a GP with this covariance function.

9ANOVA stands for analysis of variance, a statistical technique that analyzes the interac-
tions between various attributes.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

96 Covariance Functions

4.3 Eigenfunction Analysis of Kernels

We first define eigenvalues and eigenfunctions and discuss Mercer’s theorem
which allows us to express the kernel (under certain conditions) in terms of these
quantities. Section 4.3.1 gives the analytical solution of the eigenproblem for the
SE kernel under a Gaussian measure. Section 4.3.2 discusses how to compute
approximate eigenfunctions numerically for cases where the exact solution is
not known.

It turns out that Gaussian process regression can be viewed as Bayesian
linear regression with a possibly infinite number of basis functions, as discussed
in chapter 2. One possible basis set is the eigenfunctions of the covariance
function. A function φ(·) that obeys the integral equation∫

k(x,x′)φ(x) dµ(x) = λφ(x′), (4.36)

is called an eigenfunction of kernel k with eigenvalue λ with respect to measure10eigenvalue,
eigenfunction µ. The two measures of particular interest to us will be (i) Lebesgue measure

over a compact subset C of RD, or (ii) when there is a density p(x) so that
dµ(x) can be written p(x)dx.

In general there are an infinite number of eigenfunctions, which we label
φ1(x), φ2(x), . . . We assume the ordering is chosen such that λ1 ≥ λ2 ≥
The eigenfunctions are orthogonal with respect to µ and can be chosen to be
normalized so that

∫
φi(x)φj(x) dµ(x) = δij where δij is the Kronecker delta.

Mercer’s theorem (see, e.g. König, 1986) allows us to express the kernel kMercer’s theorem

in terms of the eigenvalues and eigenfunctions.

Theorem 4.2 (Mercer’s theorem). Let (X , µ) be a finite measure space and
k ∈ L∞(X 2, µ2) be a kernel such that Tk : L2(X , µ) → L2(X , µ) is positive
definite (see eq. (4.2)). Let φi ∈ L2(X , µ) be the normalized eigenfunctions of
Tk associated with the eigenvalues λi > 0. Then:

1. the eigenvalues {λi}∞i=1 are absolutely summable

2.

k(x,x′) =
∞∑

i=1

λiφi(x)φ∗i (x
′), (4.37)

holds µ2 almost everywhere, where the series converges absolutely and
uniformly µ2 almost everywhere. �

This decomposition is just the infinite-dimensional analogue of the diagonaliza-
tion of a Hermitian matrix. Note that the sum may terminate at some value
N ∈ N (i.e. the eigenvalues beyond N are zero), or the sum may be infinite.
We have the following definition [Press et al., 1992, p. 794]

10For further explanation of measure see Appendix A.7.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.3 Eigenfunction Analysis of Kernels 97

Definition 4.1 A degenerate kernel has only a finite number of non-zero eigen-
values. �

A degenerate kernel is also said to have finite rank. If a kernel is not degenerate degenerate,
nondegenerate

kernel
it is said to be nondegenerate. As an example a N -dimensional linear regression
model in feature space (see eq. (2.10)) gives rise to a degenerate kernel with at
most N non-zero eigenvalues. (Of course if the measure only puts weight on a
finite number of points n in x-space then the eigendecomposition is simply that
of a n× n matrix, even if the kernel is nondegenerate.)

The statement of Mercer’s theorem above referred to a finite measure µ.
If we replace this with Lebesgue measure and consider a stationary covariance
function, then directly from Bochner’s theorem eq. (4.5) we obtain

k(x− x′) =
∫

RD

e2πis·(x−x′) dµ(s) =
∫

RD

e2πis·x
(
e2πis·x′

)∗
dµ(s). (4.38)

The complex exponentials e2πis·x are the eigenfunctions of a stationary kernel
w.r.t. Lebesgue measure. Note the similarity to eq. (4.37) except that the
summation has been replaced by an integral.

The rate of decay of the eigenvalues gives important information about the
smoothness of the kernel. For example Ritter et al. [1995] showed that in 1-d
with µ uniform on [0, 1], processes which are r-times mean-square differentiable
have λi ∝ i−(2r+2) asymptotically. This makes sense as “rougher” processes
have more power at high frequencies, and so their eigenvalue spectrum decays
more slowly. The same phenomenon can be read off from the power spectrum
of the Matérn class as given in eq. (4.15).

Hawkins [1989] gives the exact eigenvalue spectrum for the OU process on
[0, 1]. Widom [1963; 1964] gives an asymptotic analysis of the eigenvalues of
stationary kernels taking into account the effect of the density dµ(x) = p(x)dx;
Bach and Jordan [2002, Table 3] use these results to show the effect of varying
p(x) for the SE kernel. An exact eigenanalysis of the SE kernel under the
Gaussian density is given in the next section.

4.3.1 An Analytic Example ∗

For the case that p(x) is a Gaussian and for the squared-exponential kernel
k(x, x′) = exp(−(x−x′)2/2`2), there are analytic results for the eigenvalues and
eigenfunctions, as given by Zhu et al. [1998, sec. 4]. Putting p(x) = N (x|0, σ2)
we find that the eigenvalues λk and eigenfunctions φk (for convenience let k =
0, 1, . . .) are given by

λk =

√
2a
A
Bk, (4.39)

φk(x) = exp
(
− (c− a)x2

)
Hk

(√
2cx
)
, (4.40)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

98 Covariance Functions

−2 0 2
−0.2

0

0.2

0.4

Figure 4.7: The first 3 eigenfunctions of the squared exponential kernel w.r.t. a
Gaussian density. The value of k = 0, 1, 2 is equal to the number of zero-crossings
of the function. The dashed line is proportional to the density p(x).

whereHk(x) = (−1)k exp(x2) dk

dxk exp(−x2) is the kth order Hermite polynomial
(see Gradshteyn and Ryzhik [1980, sec. 8.95]), a−1 = 4σ2, b−1 = 2`2 and

c =
√
a2 + 2ab, A = a+ b+ c, B = b/A. (4.41)

Hints on the proof of this result are given in exercise 4.5.9. A plot of the first
three eigenfunctions for a = 1 and b = 3 is shown in Figure 4.7.

The result for the eigenvalues and eigenfunctions is readily generalized to
the multivariate case when the kernel and Gaussian density are products of
the univariate expressions, as the eigenfunctions and eigenvalues will simply
be products too. For the case that a and b are equal on all D dimensions,
the degeneracy of the eigenvalue (2a

A)D/2Bk is
(
k+D−1

D−1

)
which is O(kD−1). As∑k

j=0

(
j+D−1

D−1

)
=
(
k+D

D

)
we see that the

(
k+D

D

)
’th eigenvalue has a value given by

(2a
A)D/2Bk, and this can be used to determine the rate of decay of the spectrum.

4.3.2 Numerical Approximation of Eigenfunctions

The standard numerical method for approximating the eigenfunctions and eigen-
values of eq. (4.36) is to use a numerical routine to approximate the integral
(see, e.g. Baker [1977, ch. 3]). For example letting dµ(x) = p(x)dx in eq. (4.36)
one could use the approximation

λiφi(x′) =
∫
k(x,x′)p(x)φi(x) dx ' 1

n

n∑
l=1

k(xl,x′)φi(xl), (4.42)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.4 Kernels for Non-vectorial Inputs 99

where the xl’s are sampled from p(x). Plugging in x′ = xl for l = 1, . . . , n into
eq. (4.42) we obtain the matrix eigenproblem

Kui = λmat
i ui, (4.43)

where K is the n×n Gram matrix with entries Kij = k(xi,xj), λmat
i is the ith

matrix eigenvalue and ui is the corresponding eigenvector (normalized so that
u>i ui = 1). We have φi(xj) ∼

√
n(ui)j where the

√
n factor arises from the

differing normalizations of the eigenvector and eigenfunction. Thus 1
nλ

mat
i is

an obvious estimator for λi for i = 1, . . . , n. For fixed n one would expect that
the larger eigenvalues would be better estimated than the smaller ones. The
theory of the numerical solution of eigenvalue problems shows that for a fixed i,
1
nλ

mat
i will converge to λi in the limit that n→∞ [Baker, 1977, Theorem 3.4].

It is also possible to study the convergence further; for example it is quite
easy using the properties of principal components analysis (PCA) in feature
space to show that for any l, 1 ≤ l ≤ n, En[1

n

∑l
i=1λ

mat
i] ≥

∑l
i=1λi and

En[1
n

∑n
i=l+1λ

mat
i] ≤

∑N
i=l+1λi, where En denotes expectation with respect to

samples of size n drawn from p(x). For further details see Shawe-Taylor and
Williams [2003].

The Nyström method for approximating the ith eigenfunction (see Baker Nyström method

[1977] and Press et al. [1992, section 18.1]) is given by

φi(x′) '
√
n

λmat
i

k(x′)>ui, (4.44)

where k(x′)> = (k(x1,x′), . . . , k(xn,x′)), which is obtained from eq. (4.42) by
dividing both sides by λi. Equation 4.44 extends the approximation φi(xj) '√
n(ui)j from the sample points x1, . . . ,xn to all x.

There is an interesting relationship between the kernel PCA method of
Schölkopf et al. [1998] and the eigenfunction expansion discussed above. The kernel PCA

eigenfunction expansion has (at least potentially) an infinite number of non-
zero eigenvalues. In contrast, the kernel PCA algorithm operates on the n× n
matrix K and yields n eigenvalues and eigenvectors. Eq. (4.42) clarifies the
relationship between the two. However, note that eq. (4.44) is identical (up to
scaling factors) to Schölkopf et al. [1998, eq. 4.1] which describes the projection
of a new point x′ onto the ith eigenvector in the kernel PCA feature space.

4.4 Kernels for Non-vectorial Inputs

So far in this chapter we have assumed that the input x is a vector, measuring
the values of a number of attributes (or features). However, for some learning
problems the inputs are not vectors, but structured objects such as strings,
trees or general graphs. For example, we may have a biological problem where
we want to classify proteins (represented as strings of amino acid symbols).11

11Proteins are initially made up of 20 different amino acids, of which a few may later be
modified bringing the total number up to 26 or 30.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

100 Covariance Functions

Or our input may be parse-trees derived from a linguistic analysis. Or we may
wish to represent chemical compounds as labelled graphs, with vertices denoting
atoms and edges denoting bonds.

To follow the discriminative approach we need to extract some features from
the input objects and build a predictor using these features. (For a classification
problem, the alternative generative approach would construct class-conditional
models over the objects themselves.) Below we describe two approaches to
this feature extraction problem and the efficient computation of kernels from
them: in section 4.4.1 we cover string kernels, and in section 4.4.2 we describe
Fisher kernels. There exist other proposals for constructing kernels for strings,
for example Watkins [2000] describes the use of pair hidden Markov models
(HMMs that generate output symbols for two strings conditional on the hidden
state) for this purpose.

4.4.1 String Kernels

We start by defining some notation for strings. Let A be a finite alphabet of
characters. The concatenation of strings x and y is written xy and |x| denotes
the length of string x. The string s is a substring of x if we can write x = usv
for some (possibly empty) u, s and v.

Let φs(x) denote the number of times that substring s appears in string x.
Then we define the kernel between two strings x and x′ as

k(x, x′) =
∑

s∈A∗
wsφs(x)φs(x′), (4.45)

where ws is a non-negative weight for substring s. For example, we could set
ws = λ|s|, where 0 < λ < 1, so that shorter substrings get more weight than
longer ones.

A number of interesting special cases are contained in the definition 4.45:

• Setting ws = 0 for |s| > 1 gives the bag-of-characters kernel. This takesbag-of-characters

the feature vector for a string x to be the number of times that each
character in A appears in x.

• In text analysis we may wish to consider the frequencies of word occur-bag-of-words

rence. If we require s to be bordered by whitespace then a “bag-of-words”
representation is obtained. Although this is a very simple model of text
(which ignores word order) it can be surprisingly effective for document
classification and retrieval tasks, see e.g. Hand et al. [2001, sec. 14.3].
The weights can be set differently for different words, e.g. using the “term
frequency inverse document frequency” (TF-IDF) weighting scheme de-
veloped in the information retrieval area [Salton and Buckley, 1988].

• If we only consider substrings of length k, then we obtain the k-spectrum
kernel [Leslie et al., 2003].k-spectrum kernel

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.4 Kernels for Non-vectorial Inputs 101

Importantly, there are efficient methods using suffix trees that can compute
a string kernel k(x, x′) in time linear in |x|+ |x′| (with some restrictions on the
weights {ws}) [Leslie et al., 2003, Vishwanathan and Smola, 2003].

Work on string kernels was started by Watkins [1999] and Haussler [1999].
There are many further developments of the methods we have described above;
for example Lodhi et al. [2001] go beyond substrings to consider subsequences
of x which are not necessarily contiguous, and Leslie et al. [2003] describe
mismatch string kernels which allow substrings s and s′ of x and x′ respectively
to match if there are at most m mismatches between them. We expect further
developments in this area, tailoring (or engineering) the string kernels to have
properties that make sense in a particular domain.

The idea of string kernels, where we consider matches of substrings, can
easily be extended to trees, e.g. by looking at matches of subtrees [Collins and
Duffy, 2002].

Leslie et al. [2003] have applied string kernels to the classification of protein
domains into SCOP12 superfamilies. The results obtained were significantly
better than methods based on either PSI-BLAST13 searches or a generative
hidden Markov model classifier. Similar results were obtained by Jaakkola et al.
[2000] using a Fisher kernel (described in the next section). Saunders et al.
[2003] have also described the use of string kernels on the problem of classifying
natural language newswire stories from the Reuters-2157814 database into ten
classes.

4.4.2 Fisher Kernels

As explained above, our problem is that the input x is a structured object of
arbitrary size e.g. a string, and we wish to extract features from it. The Fisher
kernel (introduced by Jaakkola et al., 2000) does this by taking a generative
model p(x|θ), where θ is a vector of parameters, and computing the feature
vector φθ(x) = ∇θ log p(x|θ). φθ(x) is sometimes called the score vector . score vector

Take, for example, a Markov model for strings. Let xk be the kth symbol
in string x. Then a Markov model gives p(x|θ) = p(x1|π)

∏|x|−1
i=1 p(xi+1|xi, A),

where θ = (π, A). Here (π)j gives the probability that x1 will be the jth symbol
in the alphabet A, and A is a |A| × |A| stochastic matrix, with ajk giving the
probability that p(xi+1 = k|xi = j). Given such a model it is straightforward
to compute the score vector for a given x.

It is also possible to consider other generative models p(x|θ). For example
we might try a kth-order Markov model where xi is predicted by the preceding
k symbols. See Leslie et al. [2003] and Saunders et al. [2003] for an interesting
discussion of the similarities of the features used in the k-spectrum kernel and
the score vector derived from an order k − 1 Markov model; see also exercise

12Structural classification of proteins database, http://scop.mrc-lmb.cam.ac.uk/scop/.
13Position-Specific Iterative Basic Local Alignment Search Tool, see

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/psi1.html.
14http://www.daviddlewis.com/resources/testcollections/reuters21578/.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

102 Covariance Functions

4.5.12. Another interesting choice is to use a hidden Markov model (HMM) as
the generative model, as discussed by Jaakkola et al. [2000]. See also exercise
4.5.11 for a linear kernel derived from an isotropic Gaussian model for x ∈ RD.

We define a kernel k(x, x′) based on the score vectors for x and x′. One
simple choice is to set

k(x, x′) = φ>θ (x)M−1φθ(x′), (4.46)

where M is a strictly positive definite matrix. Alternatively we might use the
squared exponential kernel k(x, x′) = exp(−α|φθ(x)−φθ(x′)|2) for some α > 0.

The structure of p(x|θ) as θ varies has been studied extensively in informa-
tion geometry (see, e.g. Amari, 1985). It can be shown that the manifold of
log p(x|θ) is Riemannian with a metric tensor which is the inverse of the Fisher
information matrix F , whereFisher information

matrix
F = Ex[φθ(x)φ>θ (x)]. (4.47)

Setting M = F in eq. (4.46) gives the Fisher kernel . If F is difficult to computeFisher kernel

then one might resort to setting M = I. The advantage of using the Fisher
information matrix is that it makes arc length on the manifold invariant to
reparameterizations of θ.

The Fisher kernel uses a class-independent model p(x|θ). Tsuda et al.
[2002] have developed the tangent of posterior odds (TOP) kernel based onTOP kernel

∇θ(log p(y = +1|x,θ)−log p(y = −1|x,θ)), which makes use of class-conditional
distributions for the C+ and C− classes.

4.5 Exercises

1. The OU process with covariance function k(x − x′) = exp(−|x − x′|/`)
is the unique stationary first-order Markovian Gaussian process (see Ap-
pendix B for further details). Consider training inputs x1 < x2 . . . <
xn−1 < xn on R with corresponding function values f = (f(x1), . . . , f(xn))>.
Let xl denote the nearest training input to the left of a test point x∗, and
similarly let xu denote the nearest training input to the right of x∗. Then
the Markovian property means that p(f(x∗)|f) = p(f(x∗)|f(xl), f(xu)).
Demonstrate this by choosing some x-points on the line and computing
the predictive distribution p(f(x∗)|f) using eq. (2.19), and observing that
non-zero contributions only arise from xl and xu. Note that this only
occurs in the noise-free case; if one allows the training points to be cor-
rupted by noise (equations 2.23 and 2.24) then all points will contribute
in general.

2. Computer exercise: write code to draw samples from the neural network
covariance function, eq. (4.29) in 1-d and 2-d. Consider the cases when
var(u0) is either 0 or non-zero. Explain the form of the plots obtained
when var(u0) = 0.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.5 Exercises 103

3. Consider the random process f(x) = erf(u0 +
∑D

i=1ujxj), where u ∼
N (0,Σ). Show that this non-linear transform of a process with an inho-
mogeneous linear covariance function has the same covariance function as
the erf neural network. However, note that this process is not a Gaussian
process. Draw samples from the given process and compare them to your
results from exercise 4.5.2.

4. Derive Gibbs’ non-stationary covariance function, eq. (4.32).

5. Computer exercise: write code to draw samples from Gibbs’ non-stationary
covariance function eq. (4.32) in 1-d and 2-d. Investigate various forms of
length-scale function `(x).

6. Show that the SE process is infinitely MS differentiable and that the OU
process is not MS differentiable.

7. Prove that the eigenfunctions of a symmetric kernel are orthogonal w.r.t. the
measure µ.

8. Let k̃(x,x′) = p1/2(x)k(x,x′)p1/2(x′), and assume p(x) > 0 for all x.
Show that the eigenproblem

∫
k̃(x,x′)φ̃i(x)dx = λ̃iφ̃i(x′) has the same

eigenvalues as
∫
k(x,x′)p(x)φi(x)dx = λiφi(x′), and that the eigenfunc-

tions are related by φ̃i(x) = p1/2(x)φi(x). Also give the matrix version
of this problem (Hint: introduce a diagonal matrix P to take the rôle of
p(x)). The significance of this connection is that it can be easier to find
eigenvalues of symmetric matrices than general matrices.

9. Apply the construction in the previous exercise to the eigenproblem for
the SE kernel and Gaussian density given in section 4.3.1, with p(x) =√

2a/π exp(−2ax2). Thus consider the modified kernel given by k̃(x, x′) =
exp(−ax2) exp(−b(x−x′)2) exp(−a(x′)2). Using equation 7.374.8 in Grad-
shteyn and Ryzhik [1980]:∫ ∞

−∞
exp

(
− (x− y)2

)
Hn(αx) dx =

√
π(1− α2)n/2Hn

(αy

(1− α2)1/2

)
,

verify that φ̃k(x) = exp(−cx2)Hk(
√

2cx), and thus confirm equations 4.39
and 4.40.

10. Computer exercise: The analytic form of the eigenvalues and eigenfunc-
tions for the SE kernel and Gaussian density are given in section 4.3.1.
Compare these exact results to those obtained by the Nyström approxi-
mation for various values of n and choice of samples.

11. Let x ∼ N (µ, σ2I). Consider the Fisher kernel derived from this model
with respect to variation of µ (i.e. regard σ2 as a constant). Show that:

∂ log p(x|µ)
∂µ

∣∣∣∣
µ=0

=
x
σ2

and that F = σ−2I. Thus the Fisher kernel for this model with µ = 0 is
the linear kernel k(x,x′) = 1

σ2 x · x′.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

104 Covariance Functions

12. Consider a k− 1 order Markov model for strings on a finite alphabet. Let
this model have parameters θt|s1,...,sk−1 denoting the probability p(xi =
t|xi−1 = s1, . . . , xk−1 = sk−1). Of course as these are probabilities they
obey the constraint that

∑
t′ θt′|s1,...,sk−1 = 1. Enforcing this constraint

can be achieved automatically by setting

θt|s1,...,sk−1 =
θt,s1,...,sk−1∑
t′ θt′,s1,...,sk−1

,

where the θt,s1,...,sk−1 parameters are now independent, as suggested in
[Jaakkola et al., 2000]. The current parameter values are denoted θ0.
Let the current values of θ0t,s1,...,sk−1

be set so that
∑

t′θ
0
t′,s1,...,sk−1

= 1,
i.e. that θ0t,s1,...,sk−1

= θ0t|s1,...,sk−1
.

Show that log p(x|θ) =
∑
nt,s1,...,sk−1 log θt|s1,...,sk−1 where nt,s1,...,sk−1 is

the number of instances of the substring sk−1 . . . s1t in x. Thus, following
Leslie et al. [2003], show that

∂ log p(x|θ)
∂θt,s1,...,sk−1

∣∣∣∣
θ=θ0

=
nt,s1,...,sk−1

θ0t|s1,...,sk−1

− ns1,...,sk−1 ,

where ns1,...,sk−1 is the number of instances of the substring sk−1 . . . s1 in
x. As ns1,...,sk−1θ

0
t|s1,...,sk−1

is the expected number of occurrences of the
string sk−1 . . . s1t given the count ns1,...,sk−1 , the Fisher score captures the
degree to which this string is over- or under-represented relative to the
model. For the k-spectrum kernel the relevant feature is φsk−1...,s1,t(x) =
nt,s1,...,sk−1 .

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Chapter 5

Model Selection and
Adaptation of
Hyperparameters

In chapters 2 and 3 we have seen how to do regression and classification using
a Gaussian process with a given fixed covariance function. However, in many
practical applications, it may not be easy to specify all aspects of the covari-
ance function with confidence. While some properties such as stationarity of
the covariance function may be easy to determine from the context, we typically
have only rather vague information about other properties, such as the value
of free (hyper-) parameters, e.g. length-scales. In chapter 4 several examples
of covariance functions were presented, many of which have large numbers of
parameters. In addition, the exact form and possible free parameters of the
likelihood function may also not be known in advance. Thus in order to turn
Gaussian processes into powerful practical tools it is essential to develop meth-
ods that address the model selection problem. We interpret the model selection model selection

problem rather broadly, to include all aspects of the model including the dis-
crete choice of the functional form for the covariance function as well as values
for any hyperparameters.

In section 5.1 we outline the model selection problem. In the following sec-
tions different methodologies are presented: in section 5.2 Bayesian principles
are covered, and in section 5.3 cross-validation is discussed, in particular the
leave-one-out estimator. In the remaining two sections the different methodolo-
gies are applied specifically to learning in GP models, for regression in section
5.4 and classification in section 5.5.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

106 Model Selection and Adaptation of Hyperparameters

5.1 The Model Selection Problem

In order for a model to be a practical tool in an application, one needs to make
decisions about the details of its specification. Some properties may be easy to
specify, while we typically have only vague information available about other
aspects. We use the term model selection to cover both discrete choices and the
setting of continuous (hyper-) parameters of the covariance functions. In fact,
model selection can help both to refine the predictions of the model, and give
a valuable interpretation to the user about the properties of the data, e.g. thatenable interpretation

a non-stationary covariance function may be preferred over a stationary one.

A multitude of possible families of covariance functions exists, including
squared exponential, polynomial, neural network, etc., see section 4.2 for an
overview. Each of these families typically have a number of free hyperparametershyperparameters

whose values also need to be determined. Choosing a covariance function for a
particular application thus comprises both setting of hyperparameters within a
family, and comparing across different families. Both of these problems will be
treated by the same methods, so there is no need to distinguish between them,
and we will use the term “model selection” to cover both meanings. We will
refer to the selection of a covariance function and its parameters as training oftraining

a Gaussian process.1 In the following paragraphs we give example choices of
parameterizations of distance measures for stationary covariance functions.

Covariance functions such as the squared exponential can be parameterized
in terms of hyperparameters. For example

k(xp,xq) = σ2
f exp

(
− 1

2
(xp − xq)>M(xp − xq)

)
+ σ2

nδpq, (5.1)

where θ = ({M}, σ2
f , σ

2
n)> is a vector containing all the hyperparameters,2 and

{M} denotes the parameters in the symmetric matrix M . Possible choices for
the matrix M include

M1 = `−2I, M2 = diag(`)−2, M3 = ΛΛ> + diag(`)−2, (5.2)

where ` is a vector of positive values, and Λ is a D × k matrix, k < D. The
properties of functions with these covariance functions depend on the values of
the hyperparameters. For many covariance functions it is easy to interpret the
meaning of the hyperparameters, which is of great importance when trying to
understand your data. For the squared exponential covariance function eq. (5.1)
with distance measure M2 from eq. (5.2), the `1, . . . , `D hyperparameters play
the rôle of characteristic length-scales; loosely speaking, how far do you needcharacteristic

length-scale to move (along a particular axis) in input space for the function values to be-
come uncorrelated. Such a covariance function implements automatic relevanceautomatic relevance

determination determination (ARD) [Neal, 1996], since the inverse of the length-scale deter-
mines how relevant an input is: if the length-scale has a very large value, the

1This contrasts the use of the word in the SVM literature, where “training” usually refers
to finding the support vectors for a fixed kernel.

2Sometimes the noise level parameter, σ2
n is not considered a hyperparameter; however it

plays an analogous role and is treated in the same way, so we simply consider it a hyperpa-
rameter.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.1 The Model Selection Problem 107

−2
0

2

−2

0

2

−2

−1

0

1

2

input x1input x2

ou
tp

ut
 y

(a)

−2
0

2

−2

0

2

−2

−1

0

1

2

input x1input x2

ou
tp

ut
 y

−2
0

2

−2

0

2

−2

−1

0

1

2

input x1input x2

ou
tp

ut
 y

(b) (c)

Figure 5.1: Functions with two dimensional input drawn at random from noise free
squared exponential covariance function Gaussian processes, corresponding to the
three different distance measures in eq. (5.2) respectively. The parameters were: (a)
` = 1, (b) ` = (1, 3)>, and (c) Λ = (1,−1)>, ` = (6, 6)>. In panel (a) the two inputs
are equally important, while in (b) the function varies less rapidly as a function of x2

than x1. In (c) the Λ column gives the direction of most rapid variation .

covariance will become almost independent of that input, effectively removing
it from the inference. ARD has been used successfully for removing irrelevant
input by several authors, e.g. Williams and Rasmussen [1996]. We call the pa-
rameterization of M3 in eq. (5.2) the factor analysis distance due to the analogy factor analysis distance

with the (unsupervised) factor analysis model which seeks to explain the data
through a low rank plus diagonal decomposition. For high dimensional datasets
the k columns of the Λ matrix could identify a few directions in the input space
with specially high “relevance”, and their lengths give the inverse characteristic
length-scale for those directions.

In Figure 5.1 we show functions drawn at random from squared exponential
covariance function Gaussian processes, for different choices of M . In panel
(a) we get an isotropic behaviour. In panel (b) the characteristic length-scale
is different along the two input axes; the function varies rapidly as a function
of x1, but less rapidly as a function of x2. In panel (c) the direction of most
rapid variation is perpendicular to the direction (1, 1). As this figure illustrates,

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

108 Model Selection and Adaptation of Hyperparameters

there is plenty of scope for variation even inside a single family of covariance
functions. Our task is, based on a set of training data, to make inferences about
the form and parameters of the covariance function, or equivalently, about the
relationships in the data.

It should be clear from the above example that model selection is essentially
open ended. Even for the squared exponential covariance function, there is a
huge variety of possible distance measures. However, this should not be a cause
for despair, rather seen as a possibility to learn. It requires, however, a sys-
tematic and practical approach to model selection. In a nutshell we need to be
able to compare two (or more) methods differing in values of particular param-
eters, or the shape of the covariance function, or compare a Gaussian process
model to any other kind of model. Although there are endless variations in the
suggestions for model selection in the literature three general principles cover
most: (1) compute the probability of the model given the data, (2) estimate
the generalization error and (3) bound the generalization error. We use the
term generalization error to mean the average error on unseen test examples
(from the same distribution as the training cases). Note that the training error
is usually a poor proxy for the generalization error, since the model may fit
the noise in the training set (over-fit), leading to low training error but poor
generalization performance.

In the next section we describe the Bayesian view on model selection, which
involves the computation of the probability of the model given the data, based
on the marginal likelihood. In section 5.3 we cover cross-validation, which
estimates the generalization performance. These two paradigms are applied
to Gaussian process models in the remainder of this chapter. The probably
approximately correct (PAC) framework is an example of a bound on the gen-
eralization error, and is covered in section 7.4.2.

5.2 Bayesian Model Selection

In this section we give a short outline description of the main ideas in Bayesian
model selection. The discussion will be general, but focusses on issues which will
be relevant for the specific treatment of Gaussian process models for regression
in section 5.4 and classification in section 5.5.

It is common to use a hierarchical specification of models. At the lowest levelhierarchical models

are the parameters, w. For example, the parameters could be the parameters
in a linear model, or the weights in a neural network model. At the second level
are hyperparameters θ which control the distribution of the parameters at the
bottom level. For example the “weight decay” term in a neural network, or the
“ridge” term in ridge regression are hyperparameters. At the top level we may
have a (discrete) set of possible model structures, Hi, under consideration.

We will first give a “mechanistic” description of the computations needed
for Bayesian inference, and continue with a discussion providing the intuition
about what is going on. Inference takes place one level at a time, by applying

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.2 Bayesian Model Selection 109

the rules of probability theory, see e.g. MacKay [1992b] for this framework and
MacKay [1992a] for the context of neural networks. At the bottom level, the level 1 inference

posterior over the parameters is given by Bayes’ rule

p(w|y, X,θ,Hi) =
p(y|X,w,Hi)p(w|θ,Hi)

p(y|X,θ,Hi)
, (5.3)

where p(y|X,w,Hi) is the likelihood and p(w|θ,Hi) is the parameter prior.
The prior encodes as a probability distribution our knowledge about the pa-
rameters prior to seeing the data. If we have only vague prior information
about the parameters, then the prior distribution is chosen to be broad to
reflect this. The posterior combines the information from the prior and the
data (through the likelihood). The normalizing constant in the denominator of
eq. (5.3) p(y|X,θ,Hi) is independent of the parameters, and called the marginal
likelihood (or evidence), and is given by

p(y|X,θ,Hi) =
∫
p(y|X,w,Hi)p(w|θ,Hi) dw. (5.4)

At the next level, we analogously express the posterior over the hyperparam-
eters, where the marginal likelihood from the first level plays the rôle of the level 2 inference

likelihood

p(θ|y, X,Hi) =
p(y|X,θ,Hi)p(θ|Hi)

p(y|X,Hi)
, (5.5)

where p(θ|Hi) is the hyper-prior (the prior for the hyperparameters). The
normalizing constant is given by

p(y|X,Hi) =
∫
p(y|X,θ,Hi)p(θ|Hi)dθ. (5.6)

At the top level, we compute the posterior for the model level 3 inference

p(Hi|y, X) =
p(y|X,Hi)p(Hi)

p(y|X)
, (5.7)

where p(y|X) =
∑

i p(y|X,Hi)p(Hi). We note that the implementation of
Bayesian inference calls for the evaluation of several integrals. Depending on the
details of the models, these integrals may or may not be analytically tractable
and in general one may have to resort to analytical approximations or Markov
chain Monte Carlo (MCMC) methods. In practice, especially the evaluation
of the integral in eq. (5.6) may be difficult, and as an approximation one may
shy away from using the hyperparameter posterior in eq. (5.5), and instead
maximize the marginal likelihood in eq. (5.4) w.r.t. the hyperparameters, θ.
This approximation is known as type II maximum likelihood (ML-II). Of course, ML-II

one should be careful with such an optimization step, since it opens up the
possibility of overfitting, especially if there are many hyperparameters. The
integral in eq. (5.6) can then be approximated using a local expansion around
the maximum (the Laplace approximation). This approximation will be good
if the posterior for θ is fairly well peaked, which is more often the case for the

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

110 Model Selection and Adaptation of Hyperparameters

y

m
ar

gi
na

l l
ik

el
ih

oo
d,

 p
(y

|X
,H

i)
all possible data sets

simple
intermediate
complex

Figure 5.2: The marginal likelihood p(y|X,Hi) is the probability of the data, given
the model. The number of data points n and the inputs X are fixed, and not shown.
The horizontal axis is an idealized representation of all possible vectors of targets y.
The marginal likelihood for models of three different complexities are shown. Note,
that since the marginal likelihood is a probability distribution, it must normalize
to unity. For a particular dataset indicated by y and a dotted line, the marginal
likelihood prefers a model of intermediate complexity over too simple or too complex
alternatives.

hyperparameters than for the parameters themselves, see MacKay [1999] for an
illuminating discussion. The prior over models Hi in eq. (5.7) is often taken to
be flat, so that a priori we do not favour one model over another. In this case,
the probability for the model is proportional to the expression from eq. (5.6).

It is primarily the marginal likelihood from eq. (5.4) involving the integral
over the parameter space which distinguishes the Bayesian scheme of inference
from other schemes based on optimization. It is a property of the marginal
likelihood that it automatically incorporates a trade-off between model fit and
model complexity. This is the reason why the marginal likelihood is valuable
in solving the model selection problem.

In Figure 5.2 we show a schematic of the behaviour of the marginal likelihood
for three different model complexities. Let the number of data points n and
the inputs X be fixed; the horizontal axis is an idealized representation of all
possible vectors of targets y, and the vertical axis plots the marginal likelihood
p(y|X,Hi). A simple model can only account for a limited range of possible sets
of target values, but since the marginal likelihood is a probability distribution
over y it must normalize to unity, and therefore the data sets which the model
does account for have a large value of the marginal likelihood. Conversely for
a complex model: it is capable of accounting for a wider range of data sets,
and consequently the marginal likelihood doesn’t attain such large values as
for the simple model. For example, the simple model could be a linear model,
and the complex model a large neural network. The figure illustrates why the
marginal likelihood doesn’t simply favour the models that fit the training data
the best. This effect is called Occam’s razor after William of Occam 1285-1349,Occam’s razor

whose principle: “plurality should not be assumed without necessity” he used
to encourage simplicity in explanations. See also Rasmussen and Ghahramani
[2001] for an investigation into Occam’s razor in statistical models.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.3 Cross-validation 111

Notice that the trade-off between data-fit and model complexity is automatic; automatic trade-off

there is no need to set a parameter externally to fix the trade-off. Do not confuse
the automatic Occam’s razor principle with the use of priors in the Bayesian
method. Even if the priors are “flat” over complexity, the marginal likelihood
will still tend to favour the least complex model able to explain the data. Thus,
a model complexity which is well suited to the data can be selected using the
marginal likelihood.

In the preceding paragraphs we have thought of the specification of a model
as the model structure as well as the parameters of the priors, etc. If it is
unclear how to set some of the parameters of the prior, one can treat these as
hyperparameters, and do model selection to determine how to set them. At
the same time it should be emphasized that the priors correspond to (proba-
bilistic) assumptions about the data. If the priors are grossly at odds with the
distribution of the data, inference will still take place under the assumptions
encoded by the prior, see the step-function example in section 5.4.3. To avoid
this situation, one should be careful not to employ priors which are too narrow,
ruling out reasonable explanations of the data.3

5.3 Cross-validation

In this section we consider how to use methods of cross-validation (CV) for cross-validation

model selection. The basic idea is to split the training set into two disjoint sets,
one which is actually used for training, and the other, the validation set, which
is used to monitor performance. The performance on the validation set is used
as a proxy for the generalization error and model selection is carried out using
this measure.

In practice a drawback of hold-out method is that only a fraction of the
full data set can be used for training, and that if the validation set it small,
the performance estimate obtained may have large variance. To minimize these
problems, CV is almost always used in the k-fold cross-validation setting: the k-fold cross-validation

data is split into k disjoint, equally sized subsets; validation is done on a single
subset and training is done using the union of the remaining k− 1 subsets, the
entire procedure being repeated k times, each time with a different subset for
validation. Thus, a large fraction of the data can be used for training, and all
cases appear as validation cases. The price is that k models must be trained
instead of one. Typical values for k are in the range 3 to 10.

An extreme case of k-fold cross-validation is obtained for k = n, the number
of training cases, also known as leave-one-out cross-validation (LOO-CV). Of- leave-one-out

cross-validation
(LOO-CV)

ten the computational cost of LOO-CV (“training” nmodels) is prohibitive, but
in certain cases, such as Gaussian process regression, there are computational
shortcuts.

3This is known as Cromwell’s dictum [Lindley, 1985] after Oliver Cromwell who on August
5th, 1650 wrote to the synod of the Church of Scotland: “I beseech you, in the bowels of
Christ, consider it possible that you are mistaken.”

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

112 Model Selection and Adaptation of Hyperparameters

Cross-validation can be used with any loss function. Although the squared
error loss is by far the most common for regression, there is no reason not to
allow other loss functions. For probabilistic models such as Gaussian processesother loss functions

it is natural to consider also cross-validation using the negative log probabil-
ity loss. Craven and Wahba [1979] describe a variant of cross-validation using
squared error known as generalized cross-validation which gives different weight-
ings to different datapoints so as to achieve certain invariance properites. See
Wahba [1990, sec. 4.3] for further details.

5.4 Model Selection for GP Regression

We apply Bayesian inference in section 5.4.1 and cross-validation in section 5.4.2
to Gaussian process regression with Gaussian noise. We conclude in section
5.4.3 with some more detailed examples of how one can use the model selection
principles to tailor covariance functions.

5.4.1 Marginal Likelihood

Bayesian principles provide a persuasive and consistent framework for inference.
Unfortunately, for most interesting models for machine learning, the required
computations (integrals over parameter space) are analytically intractable, and
good approximations are not easily derived. Gaussian process regression mod-
els with Gaussian noise are a rare exception: integrals over the parameters are
analytically tractable and at the same time the models are very flexible. In this
section we first apply the general Bayesian inference principles from section
5.2 to the specific Gaussian process model, in the simplified form where hy-
perparameters are optimized over. We derive the expressions for the marginal
likelihood and interpret these.

Since a Gaussian process model is a non-parametric model, it may not be
immediately obvious what the parameters of the model are. Generally, onemodel parameters

may regard the noise-free latent function values at the training inputs f as the
parameters. The more training cases there are, the more parameters. Using
the weight-space view, developed in section 2.1, one may equivalently think
of the parameters as being the weights of the linear model which uses the
basis-functions φ, which can be chosen as the eigenfunctions of the covariance
function. Of course, we have seen that this view is inconvenient for nondegen-
erate covariance functions, since these would then have an infinite number of
weights.

We proceed by applying eq. (5.3) and eq. (5.4) for the 1st level of inference—
which we find that we have already done back in chapter 2! The predictive dis-
tribution from eq. (5.3) is given for the weight-space view in eq. (2.11) and
eq. (2.12) and equivalently for the function-space view in eq. (2.22). The
marginal likelihood (or evidence) from eq. (5.4) was computed in eq. (2.30),

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.4 Model Selection for GP Regression 113

10
0

−100

−80

−60

−40

−20

0

20

40

lo
g

pr
ob

ab
ili

ty

characteristic lengthscale

minus complexity penalty
data fit
marginal likelihood

10
0

−100

−80

−60

−40

−20

0

20

Characteristic lengthscale

lo
g

m
ar

gi
na

l l
ik

el
ih

oo
d

95% conf int

 8
21
55

(a) (b)

Figure 5.3: Panel (a) shows a decomposition of the log marginal likelihood into
its constituents: data-fit and complexity penalty, as a function of the characteristic
length-scale. The training data is drawn from a Gaussian process with SE covariance
function and parameters (`, σf , σn) = (1, 1, 0.1), the same as in Figure 2.5, and we are
fitting only the length-scale parameter ` (the two other parameters have been set in
accordance with the generating process). Panel (b) shows the log marginal likelihood
as a function of the characteristic length-scale for different sizes of training sets. Also
shown, are the 95% confidence intervals for the posterior length-scales.

and we re-state the result here

log p(y|X,θ) = −1
2
y>K−1

y y − 1
2

log |Ky| −
n

2
log 2π, (5.8)

where Ky = Kf +σ2
nI is the covariance matrix for the noisy targets y (and Kf

is the covariance matrix for the noise-free latent f), and we now explicitly write
the marginal likelihood conditioned on the hyperparameters (the parameters of
the covariance function) θ. From this perspective it becomes clear why we call
eq. (5.8) the log marginal likelihood, since it is obtained through marginaliza- marginal likelihood

tion over the latent function. Otherwise, if one thinks entirely in terms of the
function-space view, the term “marginal” may appear a bit mysterious, and
similarly the “hyper” from the θ parameters of the covariance function.4

The three terms of the marginal likelihood in eq. (5.8) have readily inter- interpretation

pretable rôles: the only term involving the observed targets is the data-fit
−y>K−1

y y/2; log |Ky|/2 is the complexity penalty depending only on the co-
variance function and the inputs and n log(2π)/2 is a normalization constant.
In Figure 5.3(a) we illustrate this breakdown of the log marginal likelihood.
The data-fit decreases monotonically with the length-scale, since the model be-
comes less and less flexible. The negative complexity penalty increases with the
length-scale, because the model gets less complex with growing length-scale.
The marginal likelihood itself peaks at a value close to 1. For length-scales
somewhat longer than 1, the marginal likelihood decreases rapidly (note the

4Another reason that we like to stick to the term “marginal likelihood” is that it is the
likelihood of a non-parametric model, i.e. a model which requires access to all the training
data when making predictions; this contrasts the situation for a parametric model, which
“absorbs” the information from the training data into its (posterior) parameter (distribution).
This difference makes the two “likelihoods” behave quite differently as a function of θ.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

114 Model Selection and Adaptation of Hyperparameters

10
0

10
1

10
−1

10
0

characteristic lengthscale

no
is

e
st

an
da

rd
 d

ev
ia

tio
n

Figure 5.4: Contour plot showing the log marginal likelihood as a function of the
characteristic length-scale and the noise level, for the same data as in Figure 2.5 and
Figure 5.3. The signal variance hyperparameter was set to σ2

f = 1. The optimum is
close to the parameters used when generating the data. Note, the two ridges, one
for small noise and length-scale ` = 0.4 and another for long length-scale and noise
σ2

n = 1. The contour lines spaced 2 units apart in log probability density.

log scale!), due to the poor ability of the model to explain the data, compare to
Figure 2.5(c). For smaller length-scales the marginal likelihood decreases some-
what more slowly, corresponding to models that do accommodate the data,
but waste predictive mass at regions far away from the underlying function,
compare to Figure 2.5(b).

In Figure 5.3(b) the dependence of the log marginal likelihood on the charac-
teristic length-scale is shown for different numbers of training cases. Generally,
the more data, the more peaked the marginal likelihood. For very small numbers
of training data points the slope of the log marginal likelihood is very shallow
as when only a little data has been observed, both very short and intermediate
values of the length-scale are consistent with the data. With more data, the
complexity term gets more severe, and discourages too short length-scales.

To set the hyperparameters by maximizing the marginal likelihood, we seekmarginal likelihood
gradient the partial derivatives of the marginal likelihood w.r.t. the hyperparameters.

Using eq. (5.8) and eq. (A.14-A.15) we obtain

∂

∂θj
log p(y|X,θ) =

1
2
y>K−1 ∂K

∂θj
K−1y − 1

2
tr
(
K−1 ∂K

∂θj

)
=

1
2

tr
(
(αα> −K−1)

∂K

∂θj

)
where α = K−1y.

(5.9)

The complexity of computing the marginal likelihood in eq. (5.8) is dominated
by the need to invert the K matrix (the log determinant of K is easily com-
puted as a by-product of the inverse). Standard methods for matrix inversion of
positive definite symmetric matrices require time O(n3) for inversion of an n by
n matrix. Once K−1 is known, the computation of the derivatives in eq. (5.9)
requires only time O(n2) per hyperparameter.5 Thus, the computational over-

5Note that matrix-by-matrix products in eq. (5.9) should not be computed directly: in the
first term, do the vector-by-matrix multiplications first; in the trace term, compute only the
diagonal terms of the product.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.4 Model Selection for GP Regression 115

head of computing derivatives is small, so using a gradient based optimizer is
advantageous.

Estimation of θ by optimzation of the marginal likelihood has a long history
in spatial statistics, see e.g. Mardia and Marshall [1984]. As n increases, one
would hope that the data becomes increasingly informative about θ. However,
it is necessary to contrast what Stein [1999, sec. 3.3] calls fixed-domain asymp-
totics (where one gets increasingly dense observations within some region) with
increasing-domain asymptotics (where the size of the observation region grows
with n). Increasing-domain asymptotics are a natural choice in a time-series
context but fixed-domain asymptotics seem more natural in spatial (and ma-
chine learning) settings. For further discussion see Stein [1999, sec. 6.4].

Figure 5.4 shows an example of the log marginal likelihood as a function
of the characteristic length-scale and the noise standard deviation hyperpa-
rameters for the squared exponential covariance function, see eq. (5.1). The
signal variance σ2

f was set to 1.0. The marginal likelihood has a clear maximum
around the hyperparameter values which were used in the Gaussian process
from which the data was generated. Note that for long length-scales and a
noise level of σ2

n = 1, the marginal likelihood becomes almost independent of
the length-scale; this is caused by the model explaining everything as noise,
and no longer needing the signal covariance. Similarly, for small noise and a
length-scale of ` = 0.4, the marginal likelihood becomes almost independent of
the noise level; this is caused by the ability of the model to exactly interpolate
the data at this short length-scale. We note that although the model in this
hyperparameter region explains all the data-points exactly, this model is still
disfavoured by the marginal likelihood, see Figure 5.2.

There is no guarantee that the marginal likelihood does not suffer from mul- multiple local maxima

tiple local optima. Practical experience with simple covariance functions seem
to indicate that local maxima are not a devastating problem, but certainly they
do exist. In fact, every local maximum corresponds to a particular interpre-
tation of the data. In Figure 5.5 an example with two local optima is shown,
together with the corresponding (noise free) predictions of the model at each
of the two local optima. One optimum corresponds to a relatively complicated
model with low noise, whereas the other corresponds to a much simpler model
with more noise. With only 7 data points, it is not possible for the model to
confidently reject either of the two possibilities. The numerical value of the
marginal likelihood for the more complex model is about 60% higher than for
the simple model. According to the Bayesian formalism, one ought to weight
predictions from alternative explanations according to their posterior probabil-
ities. In practice, with data sets of much larger sizes, one often finds that one
local optimum is orders of magnitude more probable than other local optima,
so averaging together alternative explanations may not be necessary. However,
care should be taken that one doesn’t end up in a bad local optimum.

Above we have described how to adapt the parameters of the covariance
function given one dataset. However, it may happen that we are given several
datasets all of which are assumed to share the same hyperparameters; this
is known as multi-task learning , see e.g. Caruana [1997]. In this case one can multi-task learning

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

116 Model Selection and Adaptation of Hyperparameters

10
0

10
1

10
−1

10
0

characteristic lengthscale

no
is

e
st

an
da

rd
 d

ev
ia

tio
n

(a)

−5 0 5
−2

−1

0

1

2

input, x

ou
tp

ut
, y

−5 0 5
−2

−1

0

1

2

input, x

ou
tp

ut
, y

(b) (c)

Figure 5.5: Panel (a) shows the marginal likelihood as a function of the hyperparame-
ters ` (length-scale) and σ2

n (noise standard deviation), where σ2
f = 1 (signal standard

deviation) for a data set of 7 observations (seen in panels (b) and (c)). There are
two local optima, indicated with ’+’: the global optimum has low noise and a short
length-scale; the local optimum has a high noise and a long length scale. In (b) and (c)
the inferred underlying functions (and 95% confidence intervals) are shown for each
of the two solutions. In fact, the data points were generated by a Gaussian process
with (`, σ2

f , σ2
n) = (1, 1, 0.1) in eq. (5.1).

simply sum the log marginal likelihoods of the individual problems and optimize
this sum w.r.t. the hyperparameters [Minka and Picard, 1999].

5.4.2 Cross-validation

The predictive log probability when leaving out training case i isnegative log validation
density loss

log p(yi|X,y−i,θ) = −1
2

log σ2
i −

(yi − µi)2

2σ2
i

− 1
2

log 2π, (5.10)

where the notation y−i means all targets except number i, and µi and σ2
i are

computed according to eq. (2.23) and (2.24) respectively, in which the training
sets are taken to be (X−i,y−i). Accordingly, the LOO log predictive probability
is

LLOO(X,y,θ) =
n∑

i=1

log p(yi|X,y−i,θ), (5.11)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.4 Model Selection for GP Regression 117

see [Geisser and Eddy, 1979] for a discussion of this and related approaches.
LLOO in eq. (5.11) is sometimes called the log pseudo-likelihood. Notice, that pseudo-likelihood

in each of the n LOO-CV rotations, inference in the Gaussian process model
(with fixed hyperparameters) essentially consists of computing the inverse co-
variance matrix, to allow predictive mean and variance in eq. (2.23) and (2.24)
to be evaluated (i.e. there is no parameter-fitting, such as there would be in a
parametric model). The key insight is that when repeatedly applying the pre-
diction eq. (2.23) and (2.24), the expressions are almost identical: we need the
inverses of covariance matrices with a single column and row removed in turn.
This can be computed efficiently from the inverse of the complete covariance
matrix using inversion by partitioning, see eq. (A.11-A.12). A similar insight
has also been used for spline models, see e.g. Wahba [1990, sec. 4.2]. The ap-
proach was used for hyperparameter selection in Gaussian process models in
Sundararajan and Keerthi [2001]. The expressions for the LOO-CV predictive
mean and variance are

µi = yi − [K−1y]i/[K−1]ii, and σ2
i = 1/[K−1]ii, (5.12)

where careful inspection reveals that the mean µi is in fact independent of yi as
indeed it should be. The computational expense of computing these quantities
is O(n3) once for computing the inverse of K plus O(n2) for the entire LOO-
CV procedure (when K−1 is known). Thus, the computational overhead for
the LOO-CV quantities is negligible. Plugging these expressions into eq. (5.10)
and (5.11) produces a performance estimator which we can optimize w.r.t. hy-
perparameters to do model selection. In particular, we can compute the partial
derivatives of LLOO w.r.t. the hyperparameters (using eq. (A.14)) and use con-
jugate gradient optimization. To this end, we need the partial derivatives of
the LOO-CV predictive mean and variances from eq. (5.12) w.r.t. the hyperpa-
rameters

∂µi

∂θj
=

[Zjα]i
[K−1]ii

− αi[ZjK
−1]ii

[K−1]2ii
,

∂σ2
i

∂θj
=

[ZjK
−1]ii

[K−1]2ii
, (5.13)

where α = K−1y and Zj = K−1 ∂K
∂θj

. The partial derivatives of eq. (5.11) are
obtained by using the chain-rule and eq. (5.13) to give

∂LLOO

∂θj
=

n∑
i=1

∂ log p(yi|X,y−i,θ)
∂µi

∂µi

∂θj
+
∂ log p(yi|X,y−i,θ)

∂σ2
i

∂σ2
i

∂θj

=
n∑

i=1

(
αi[Zjα]i −

1
2

(
1 +

α2
i

[K−1]ii

)
[ZjK

−1]ii
)
/[K−1]ii.

(5.14)

The computational complexity is O(n3) for computing the inverse of K, and
O(n3) per hyperparameter6 for the derivative eq. (5.14). Thus, the computa-
tional burden of the derivatives is greater for the LOO-CV method than for the
method based on marginal likelihood, eq. (5.9).

6Computation of the matrix-by-matrix product K−1 ∂K
∂θj

for each hyperparameter is un-

avoidable.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

118 Model Selection and Adaptation of Hyperparameters

In eq. (5.10) we have used the log of the validation density as a cross-
validation measure of fit (or equivalently, the negative log validation density as
a loss function). One could also envisage using other loss functions, such as the
commonly used squared error. However, this loss function is only a functionLOO-CV with squared

error loss of the predicted mean and ignores the validation set variances. Further, since
the mean prediction eq. (2.23) is independent of the scale of the covariances
(i.e. you can multiply the covariance of the signal and noise by an arbitrary
positive constant without changing the mean predictions), one degree of freedom
is left undetermined7 by a LOO-CV procedure based on squared error loss (or
any other loss function which depends only on the mean predictions). But, of
course, the full predictive distribution does depend on the scale of the covariance
function. Also, computation of the derivatives based on the squared error loss
has similar computational complexity as the negative log validation density loss.
In conclusion, it seems unattractive to use LOO-CV based on squared error loss
for hyperparameter selection.

Comparing the pseudo-likelihood for the LOO-CV methodology with the
marginal likelihood from the previous section, it is interesting to ask under
which circumstances each method might be preferable. Their computational
demands are roughly identical. This issue has not been studied much empir-
ically. However, it is interesting to note that the marginal likelihood tells us
the probability of the observations given the assumptions of the model. This
contrasts with the frequentist LOO-CV value, which gives an estimate for the
(log) predictive probability, whether or not the assumptions of the model may
be fulfilled. Thus Wahba [1990, sec. 4.8] has argued that CV procedures should
be more robust against model mis-specification.

5.4.3 Examples and Discussion

In the following we give three examples of model selection for regression models.
We first describe a 1-d modelling task which illustrates how special covariance
functions can be designed to achieve various useful effects, and can be evaluated
using the marginal likelihood. Secondly, we make a short reference to the model
selection carried out for the robot arm problem discussed in chapter 2 and again
in chapter 8. Finally, we discuss an example where we deliberately choose a
covariance function that is not well-suited for the problem; this is the so-called
mis-specified model scenario.

Mauna Loa Atmospheric Carbon Dioxide

We will use a modelling problem concerning the concentration of CO2 in the
atmosphere to illustrate how the marginal likelihood can be used to set multiple
hyperparameters in hierarchical Gaussian process models. A complex covari-
ance function is derived by combining several different kinds of simple covariance
functions, and the resulting model provides an excellent fit to the data as well

7In the special case where we know either the signal or the noise variance there is no
indeterminancy.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.4 Model Selection for GP Regression 119

1960 1970 1980 1990 2000 2010 2020

320

340

360

380

400

420

year

C
O

2 c
on

ce
nt

ra
tio

n,
 p

pm

Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-
tion of CO2 made between 1958 and the end of 2003, together with 95% predictive
confidence region for a Gaussian process regression model, 20 years into the future.
Rising trend and seasonal variations are clearly visible. Note also that the confidence
interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).8 The data is shown in Figure 5.6. Our goal is
the model the CO2 concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential smooth trend

(SE) covariance term, with two hyperparameters controlling the amplitude θ1
and characteristic length-scale θ2

k1(x, x′) = θ21 exp
(
− (x− x′)2

2θ22

)
. (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to seasonal component

model the seasonal variation. However, it is not clear that the seasonal trend is
8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

120 Model Selection and Adaptation of Hyperparameters

1960 1970 1980 1990 2000 2010 2020

320

340

360

380

400

C
O

2 c
on

ce
nt

ra
tio

n,
 p

pm

year

−1

−0.5

0

0.5

1

C
O

2 c
on

ce
nt

ra
tio

n,
 p

pm

J F M A M J J A S O N D

−3

−2

−1

0

1

2

3

C
O

2 c
on

ce
nt

ra
tio

n,
 p

pm

month

1958
1970
2003

(a) (b)

Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the
squared exponential contribution; superimposed is the medium term trend, full line,
right hand scale, predicted by the rational quadratic contribution; the vertical dash-
dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal
variation over the year for three different years. The concentration peaks in mid May
and has a low in the beginning of October. The seasonal variation is smooth, but
not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5
ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The
characteristic decay length of the periodic component is inferred to be 90 years, so
the seasonal trend changes rather slowly, as also suggested by the gradual progression
between the three years shown.

exactly periodic, so we modify eq. (4.31) by taking the product with a squared
exponential component (using the product construction from section 4.2.4), to
allow a decay away from exact periodicity

k2(x, x′) = θ23 exp
(
− (x− x′)2

2θ24
− 2 sin2(π(x− x′))

θ25

)
, (5.16)

where θ3 gives the magnitude, θ4 the decay-time for the periodic component,
and θ5 the smoothness of the periodic component; the period has been fixed
to one (year). The seasonal component in the data is caused primarily by
different rates of CO2 uptake for plants depending on the season, and it is
probably reasonable to assume that this pattern may itself change slowly over
time, partially due to the elevation of the CO2 level itself; if this effect turns
out not to be relevant, then it can be effectively removed at the fitting stage by
allowing θ4 to become very large.

To model the (small) medium term irregularities a rational quadratic termmedium term
irregularities is used, eq. (4.19)

k3(x, x′) = θ26

(
1 +

(x− x′)2

2θ8θ27

)−θ8

, (5.17)

where θ6 is the magnitude, θ7 is the typical length-scale and θ8 is the shape pa-
rameter determining diffuseness of the length-scales, see the discussion on page
87. One could also have used a squared exponential form for this component,
but it turns out that the rational quadratic works better (gives higher marginal
likelihood), probably because it can accommodate several length-scales.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.4 Model Selection for GP Regression 121

J F M A M J J A S O N D
1960

1970

1980

1990

2000

2010

2020

Month

Y
ea

r

−3.6

−3.3

−2.8

−2.8

−2 −2

−1

−1
0

01 12 2

2.8
3

3.1

Figure 5.8: The time course of the seasonal effect, plotted in a months vs. year plot
(with wrap-around continuity between the edges). The labels on the contours are in
ppmv of CO2. The training period extends up to the dashed line. Note the slow
development: the height of the May peak may have started to recede, but the low in
October may currently (2005) be deepening further. The seasonal effects from three
particular years were also plotted in Figure 5.7(b).

Finally we specify a noise model as the sum of a squared exponential con- noise terms

tribution and an independent component

k4(xp, xq) = θ29 exp
(
− (xp − xq)2

2θ210

)
+ θ211δpq, (5.18)

where θ9 is the magnitude of the correlated noise component, θ10 is its length-
scale and θ11 is the magnitude of the independent noise component. Noise in
the series could be caused by measurement inaccuracies, and by local short-term
weather phenomena, so it is probably reasonable to assume at least a modest
amount of correlation in time. Notice that the correlated noise component, the
first term of eq. (5.18), has an identical expression to the long term component
in eq. (5.15). When optimizing the hyperparameters, we will see that one of
these components becomes large with a long length-scale (the long term trend),
while the other remains small with a short length-scale (noise). The fact that
we have chosen to call one of these components ‘signal’ and the other one ‘noise’
is only a question of interpretation. Presumably we are less interested in very
short-term effect, and thus call it noise; if on the other hand we were interested
in this effect, we would call it signal.

The final covariance function is

k(x, x′) = k1(x, x′) + k2(x, x′) + k3(x, x′) + k4(x, x′), (5.19)

with hyperparameters θ = (θ1, . . . , θ11)>. We first subtract the empirical mean
of the data (341 ppm), and then fit the hyperparameters by optimizing the parameter estimation

marginal likelihood using a conjugate gradient optimizer. To avoid bad local
minima (e.g. caused by swapping rôles of the rational quadratic and squared
exponential terms) a few random restarts are tried, picking the run with the
best marginal likelihood, which was log p(y|X,θ) = −108.5.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

122 Model Selection and Adaptation of Hyperparameters

We now examine and interpret the hyperparameters which optimize the
marginal likelihood. The long term trend has a magnitude of θ1 = 66 ppm
and a length scale of θ2 = 67 years. The mean predictions inside the range
of the training data and extending for 20 years into the future are depicted in
Figure 5.7 (a). In the same plot (with right hand axis) we also show the medium
term effects modelled by the rational quadratic component with magnitude
θ6 = 0.66 ppm, typical length θ7 = 1.2 years and shape θ8 = 0.78. The very
small shape value allows for covariance at many different length-scales, which
is also evident in Figure 5.7 (a). Notice that beyond the edge of the training
data the mean of this contribution smoothly decays to zero, but of course it
still has a contribution to the uncertainty, see Figure 5.6.

The hyperparameter values for the decaying periodic contribution are: mag-
nitude θ3 = 2.4 ppm, decay-time θ4 = 90 years, and the smoothness of the
periodic component is θ5 = 1.3. The quite long decay-time shows that the
data have a very close to periodic component in the short term. In Figure 5.7
(b) we show the mean periodic contribution for three years corresponding to
the beginning, middle and end of the training data. This component is not
exactly sinusoidal, and it changes its shape slowly over time, most notably the
amplitude is increasing, see Figure 5.8.

For the noise components, we get the amplitude for the correlated compo-
nent θ9 = 0.18 ppm, a length-scale of θ10 = 1.6 months and an independent
noise magnitude of θ11 = 0.19 ppm. Thus, the correlation length for the noise
component is indeed inferred to be short, and the total magnitude of the noise
is just

√
θ29 + θ211 = 0.26 ppm, indicating that the data can be explained very

well by the model. Note also in Figure 5.6 that the model makes relatively
confident predictions, the 95% confidence region being 16 ppm wide at a 20
year prediction horizon.

In conclusion, we have seen an example of how non-trivial structure can be
inferred by using composite covariance functions, and that the ability to leave
hyperparameters to be determined by the data is useful in practice. Of course
a serious treatment of such data would probably require modelling of other
effects, such as demographic and economic indicators too. Finally, one may
want to use a real time-series approach (not just a regression from time to CO2

level as we have done here), to accommodate causality, etc. Nevertheless, the
ability of the Gaussian process to avoid simple parametric assumptions and still
build in a lot of structure makes it, as we have seen, a very attractive model in
many application domains.

Robot Arm Inverse Dynamics

We have discussed the use of GPR for the SARCOS robot arm inverse dynamics
problem in section 2.5. This example is also further studied in section 8.3.7
where a variety of approximation methods are compared, because the size of
the training set (44, 484 examples) precludes the use of simple GPR due to its
O(n2) storage and O(n3) time complexity.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.4 Model Selection for GP Regression 123

−1 −0.5 0 0.5 1
−2

−1

0

1

2

ou
tp

ut
, y

input, x
−1 −0.5 0 0.5 1

−2

−1

0

1

2

ou
tp

ut
, y

input, x

(a) (b)

Figure 5.9: Mis-specification example. Fit to 64 datapoints drawn from a step func-
tion with Gaussian noise with standard deviation σn = 0.1. The Gaussian process
models are using a squared exponential covariance function. Panel (a) shows the mean
and 95% confidence interval for the noisy signal in grey, when the hyperparameters are
chosen to maximize the marginal likelihood. Panel (b) shows the resulting model when
the hyperparameters are chosen using leave-one-out cross-validation (LOO-CV). Note
that the marginal likelihood chooses a high noise level and long length-scale, whereas
LOO-CV chooses a smaller noise level and shorter length-scale. It is not immediately
obvious which fit it worse.

One of the techniques considered in section 8.3.7 is the subset of datapoints
(SD) method, where we simply discard some of the data and only make use
of m < n training examples. Given a subset of the training data of size m
selected at random, we adjusted the hyperparameters by optimizing either the
marginal likelihood or LLOO. As ARD was used, this involved adjusting D +
2 = 23 hyperparameters. This process was repeated 10 times with different
random subsets of the data selected for both m = 1024 and m = 2048. The
results show that the predictive accuracy obtained from the two optimization
methods is very similar on both standardized mean squared error (SMSE) and
mean standardized log loss (MSLL) criteria, but that the marginal likelihood
optimization is much quicker.

Step function example illustrating mis-specification

In this section we discuss the mis-specified model scenario, where we attempt
to learn the hyperparameters for a covariance function which is not very well
suited to the data. The mis-specification arises because the data comes from a
function which has either zero or very low probability under the GP prior. One
could ask why it is interesting to discuss this scenario, since one should surely
simply avoid choosing such a model in practice. While this is true in theory,
for practical reasons such as the convenience of using standard forms for the
covariance function or because vague prior information, one inevitably ends up
in a situation which resembles some level of mis-specification.

As an example, we use data from a noisy step function and fit a GP model
with a squared exponential covariance function, Figure 5.9. There is mis-
specification because it would be very unlikely that samples drawn from a GP

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

124 Model Selection and Adaptation of Hyperparameters

−1 −0.5 0 0.5 1
−2

−1

0

1

2

ou
tp

ut
, y

input, x
−1 −0.5 0 0.5 1

−2

−1

0

1

2

ou
tp

ut
, y

input, x

(a) (b)

Figure 5.10: Same data as in Figure 5.9. Panel (a) shows the result of using a
covariance function which is the sum of two squared-exponential terms. Although this
is still a stationary covariance function, it gives rise to a higher marginal likelihood
than for the squared-exponential covariance function in Figure 5.9(a), and probably
also a better fit. In panel (b) the neural network covariance function eq. (4.29) was
used, providing a much larger marginal likelihood and a very good fit.

with the stationary SE covariance function would look like a step function. For
short length-scales samples can vary quite quickly, but they would tend to vary
rapidly all over, not just near the step. Conversely a stationary SE covariance
function with a long length-scale could model the flat parts of the step function
but not the rapid transition. Note that Gibbs’ covariance function eq. (4.32)
would be one way to achieve the desired effect. It is interesting to note the dif-
ferences between the model optimized with marginal likelihood in Figure 5.9(a),
and one optimized with LOO-CV in panel (b) of the same figure. See exercise
5.6.2 for more on how these two criteria weight the influence of the prior.

For comparison, we show the predictive distribution for two other covari-
ance functions in Figure 5.10. In panel (a) a sum of two squared exponential
terms were used in the covariance. Notice that this covariance function is still
stationary, but it is more flexible than a single squared exponential, since it has
two magnitude and two length-scale parameters. The predictive distribution
looks a little bit better, and the value of the log marginal likelihood improves
from −37.7 in Figure 5.9(a) to −26.1 in Figure 5.10(a). We also tried the neural
network covariance function from eq. (4.29), which is ideally suited to this case,
since it allows saturation at different values in the positive and negative direc-
tions of x. As shown in Figure 5.10(b) the predictions are also near perfect,
and the log marginal likelihood is much larger at 50.2.

5.5 Model Selection for GP Classification

In this section we compute the derivatives of the approximate marginal likeli-
hood for the Laplace and EP methods for binary classification which are needed
for training. We also give the detailed algorithms for these, and briefly discuss
the possible use of cross-validation and other methods for training binary GP

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.5 Model Selection for GP Classification 125

classifiers.

5.5.1 Derivatives of the Marginal Likelihood for Laplace’s ∗
Approximation

Recall from section 3.4.4 that the approximate log marginal likelihood was given
in eq. (3.32) as

log q(y|X,θ) = −1
2
f̂>K−1f̂ + log p(y|f̂)− 1

2
log |B|, (5.20)

where B = I + W
1
2KW

1
2 and f̂ is the maximum of the posterior eq. (3.12)

found by Newton’s method in Algorithm 3.1, and W is the diagonal matrix
W = −∇∇ log p(y|f̂). We can now optimize the approximate marginal likeli-
hood q(y|X,θ) w.r.t. the hyperparameters, θ. To this end we seek the partial
derivatives of ∂q(y|X,θ)/∂θj . The covariance matrix K is a function of the hy-
perparameters, but f̂ and therefore W are also implicitly functions of θ, since
when θ changes, the optimum of the posterior f̂ also changes. Thus

∂ log q(y|X,θ)
∂θj

=
∂ log q(y|X,θ)

∂θj

∣∣∣∣
explicit

+
n∑

i=1

∂ log q(y|X,θ)
∂f̂i

∂f̂i

∂θj
, (5.21)

by the chain rule. Using eq. (A.14) and eq. (A.15) the explicit term is given by

∂ log q(y|X,θ)
∂θj

∣∣∣∣
explicit

=
1
2
f̂>K−1 ∂K

∂θj
K−1f̂− 1

2
tr
(
(W−1+K)−1 ∂K

∂θj

)
. (5.22)

When evaluating the remaining term from eq. (5.21), we utilize the fact that
f̂ is the maximum of the posterior, so that ∂Ψ(f)/∂f = 0 at f = f̂ , where the
(un-normalized) log posterior Ψ(f) is defined in eq. (3.12); thus the implicit
derivatives of the two first terms of eq. (5.20) vanish, leaving only

∂ log q(y|X,θ)
∂f̂i

= −1
2
∂ log |B|
∂f̂i

= −1
2

tr
(
(K−1 +W)−1 ∂W

∂f̂i

)
= −1

2
[
(K−1 +W)−1

]
ii

∂3

∂f3
i

log p(y|f̂).
(5.23)

In order to evaluate the derivative ∂ f̂/∂θj , we differentiate the self-consistent
eq. (3.17) f̂ = K∇ log p(y|f̂) to obtain

∂ f̂
∂θj

=
∂K

∂θj
∇ log p(y|f̂)+K∂∇ log p(y|f̂)

∂ f̂

∂ f̂
∂θj

= (I+KW)−1 ∂K

∂θj
∇ log p(y|f̂),

(5.24)
where we have used the chain rule ∂/∂θj = ∂ f̂/∂θj · ∂/∂ f̂ and the identity
∂∇ log p(y|f̂)/∂ f̂ = −W . The desired derivatives are obtained by plugging
eq. (5.22-5.24) into eq. (5.21).

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

126 Model Selection and Adaptation of Hyperparameters

input: X (inputs), y (±1 targets), θ (hypers), p(y|f) (likelihood function)
2: compute K compute covariance matrix from X and θ

(f , a) := mode
(
K,y, p(y|f)

)
locate posterior mode using Algorithm 3.1

4: W := −∇∇ log p(y|f)
L := cholesky(I +W

1
2KW

1
2) solve LL> = B = I +W

1
2KW

1
2

6: logZ := − 1
2a
>f + log p(y|f)−

∑
log(diag(L)) eq. (5.20)

R := W
1
2L>\(L\W 1

2) R = W
1
2 (I +W

1
2KW

1
2)−1W

1
2

8: C := L\(W 1
2K)

s2 := − 1
2 diag

(
diag(K)− diag(C>C)

)
∇3 log p(y|f)

}
eq. (5.23)

10: for j := 1 . . .dim(θ) do
C := ∂K/∂θj compute derivative matrix from X and θ

12: s1 := 1
2a
>Ca− 1

2 tr(RC) eq. (5.22)
b := C∇ log p(y|f)

14: s3 := b−KRb

}
eq. (5.24)

∇j logZ := s1 + s>2 s3 eq. (5.21)
16: end for

return: logZ (log marginal likelihood), ∇ logZ (partial derivatives)

Algorithm 5.1: Compute the approximate log marginal likelihood and its derivatives
w.r.t. the hyperparameters for binary Laplace GPC for use by an optimization routine,
such as conjugate gradient optimization. In line 3 Algorithm 3.1 on page 46 is called
to locate the posterior mode. In line 12 only the diagonal elements of the matrix
product should be computed. In line 15 the notation ∇j means the partial derivative
w.r.t. the j’th hyperparameter. An actual implementation may also return the value
of f to be used as an initial guess for the subsequent call (as an alternative the zero
initialization in line 2 of Algorithm 3.1).

Details of the Implementation

The implementation of the log marginal likelihood and its partial derivatives
w.r.t. the hyperparameters is shown in Algorithm 5.1. It is advantageous to re-
write the equations from the previous section in terms of well-conditioned sym-
metric positive definite matrices, whose solutions can be obtained by Cholesky
factorization, combining numerical stability with computational speed.

In detail, the matrix of central importance turns out to be

R = (W−1 +K)−1 = W
1
2 (I +W

1
2KW

1
2)−1W

1
2 , (5.25)

where the right hand side is suitable for numerical evaluation as in line 7 of
Algorithm 5.1, reusing the Cholesky factor L from the Newton scheme above.
Remember that W is diagonal so eq. (5.25) does not require any real matrix-by-
matrix products. Rewriting eq. (5.22-5.23) is straightforward, and for eq. (5.24)
we apply the matrix inversion lemma (eq. (A.9)) to (I + KW)−1 to obtain
I −KR, which is used in the implementation.

The computational complexity is dominated by the Cholesky factorization
in line 5 which takes n3/6 operations per iteration of the Newton scheme. In
addition the computation of R in line 7 is also O(n3), all other computations
being at most O(n2) per hyperparameter.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

5.5 Model Selection for GP Classification 127

input: X (inputs), y (±1 targets), θ (hyperparameters)
2: compute K compute covariance matrix from X and θ

(ν̃, τ̃ , logZEP) := EP
(
K,y

)
run the EP Algorithm 3.5

4: L := cholesky(I + S̃
1
2KS̃

1
2) solve LL> = B = I + S̃

1
2KS̃

1
2

b := ν̃ − S̃ 1
2L\(L>\S̃ 1

2Kν̃) b from under eq. (5.27)
6: R := bb> − S̃ 1

2L>\(L\S̃ 1
2) R = bb> − S̃ 1

2B−1S̃
1
2

for j := 1 . . .dim(θ) do
8: C := ∂K/∂θj compute derivative matrix from X and θ

∇j logZEP := 1
2 tr(RC) eq. (5.27)

10: end for
return: logZEP (log marginal likelihood), ∇ logZEP (partial derivatives)

Algorithm 5.2: Compute the log marginal likelihood and its derivatives w.r.t. the
hyperparameters for EP binary GP classification for use by an optimization routine,
such as conjugate gradient optimization. S̃ is a diagonal precision matrix with entries
S̃ii = τ̃i. In line 3 Algorithm 3.5 on page 58 is called to compute parameters of the EP
approximation. In line 9 only the diagonal of the matrix product should be computed
and the notation ∇j means the partial derivative w.r.t. the j’th hyperparameter. The
computational complexity is dominated by the Cholesky factorization in line 4 and
the solution in line 6, both of which are O(n3).

5.5.2 Derivatives of the Marginal Likelihood for EP ∗

Optimization of the EP approximation to the marginal likelihood w.r.t. the
hyperparameters of the covariance function requires evaluation of the partial
derivatives from eq. (3.65). Luckily, it turns out that implicit terms in the
derivatives caused by the solution of EP being a function of the hyperparam-
eters is exactly zero. We will not present the proof here, see Seeger [2005].
Consequently, we only have to take account of the explicit dependencies

∂ logZEP

∂θj
=

∂

∂θj

(
− 1

2
µ̃>(K + Σ̃)−1µ̃− 1

2
log |K + Σ̃|

)
(5.26)

=
1
2
µ̃>(K + S̃−1)−1 ∂K

∂θj
(K + S̃−1)−1µ̃− 1

2
tr
(
(K + S̃−1)−1 ∂K

∂θj

)
.

In Algorithm 5.2 the derivatives from eq. (5.26) are implemented using

∂ logZEP

∂θj
=

1
2

tr
((

bb> − S̃ 1
2B−1S

1
2
)∂K
∂θj

)
, (5.27)

where b = (I − S̃ 1
2B−1S̃

1
2K)ν̃.

5.5.3 Cross-validation

Whereas the LOO-CV estimates were easily computed for regression through
the use of rank-one updates, it is not so obvious how to generalize this to
classification. Opper and Winther [2000, sec. 5] use the cavity distributions
of their mean-field approach as LOO-CV estimates, and one could similarly
use the cavity distributions from the closely-related EP algorithm discussed in

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

128 Model Selection and Adaptation of Hyperparameters

section 3.6. Although technically the cavity distribution for site i could depend
on the label yi (because the algorithm uses all cases when converging to its
fixed point), this effect is probably very small and indeed Opper and Winther
[2000, sec. 8] report very high precision for these LOO-CV estimates. As an
alternative k-fold CV could be used explicitly for some moderate value of k.

Other Methods for Setting Hyperparameters

Above we have considered setting hyperparameters by optimizing the marginal
likelihood or cross-validation criteria. However, some other criteria have been
proposed in the literature. For example Cristianini et al. [2002] define the
alignment between a Gram matrix K and the corresponding +1/− 1 vector ofalignment

targets y as

A(K,y) =
y>Ky
n‖K‖F

, (5.28)

where ‖K‖F denotes the Frobenius norm of the matrixK, as defined in eq. (A.16).
Lanckriet et al. [2004] show that if K is a convex combination of Gram ma-
trices Ki so that K =

∑
i νiKi with νi ≥ 0 for all i then the optimization of

the alignment score w.r.t. the νi’s can be achieved by solving a semidefinite
programming problem.

5.5.4 Example

For an example of model selection, refer to section 3.7. Although the experi-
ments there were done by exhaustively evaluating the marginal likelihood for a
whole grid of hyperparameter values, the techniques described in this chapter
could be used to locate the same solutions more efficiently.

5.6 Exercises

1. The optimization of the marginal likelihood w.r.t. the hyperparameters
is generally not possible in closed form. Consider, however, the situation
where one hyperparameter, θ0 gives the overall scale of the covariance

ky(x,x′) = θ0k̃y(x,x′), (5.29)

where ky is the covariance function for the noisy targets (i.e. including
noise contributions) and k̃y(x,x′) may depend on further hyperparam-
eters, θ1, θ2, Show that the marginal likelihood can be optimized
w.r.t. θ0 in closed form.

2. Consider the difference between the log marginal likelihood given by:∑
i log p(yi|{yj , j < i}), and the LOO-CV using log probability which is

given by
∑

i log p(yi|{yj , j 6= i}). From the viewpoint of the marginal
likelihood the LOO-CV conditions too much on the data. Show that the
expected LOO-CV loss is greater than the expected marginal likelihood.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Chapter 6

Relationships between GPs
and Other Models

In this chapter we discuss a number of concepts and models that are related to
Gaussian process prediction. In section 6.1 we cover reproducing kernel Hilbert
spaces (RKHSs), which define a Hilbert space of sufficiently-smooth functions
corresponding to a given positive semidefinite kernel k.

As we discussed in chapter 1, there are many functions that are consistent
with a given dataset D. We have seen how the GP approach puts a prior
over functions in order to deal with this issue. A related viewpoint is provided
by regularization theory (described in section 6.2) where one seeks a trade-off
between data-fit and the RKHS norm of function. This is closely related to the
MAP estimator in GP prediction, and thus omits uncertainty in predictions
and also the marginal likelihood. In section 6.3 we discuss splines, a special
case of regularization which is obtained when the RKHS is defined in terms of
differential operators of a given order.

There are a number of other families of kernel machines that are related
to Gaussian process prediction. In section 6.4 we describe support vector ma-
chines, in section 6.5 we discuss least-squares classification (LSC), and in section
6.6 we cover relevance vector machines (RVMs).

6.1 Reproducing Kernel Hilbert Spaces

Here we present a brief introduction to reproducing kernel Hilbert spaces. The
theory was developed by Aronszajn [1950]; a more recent treatise is Saitoh
[1988]. Information can also be found in Wahba [1990], Schölkopf and Smola
[2002] and Wegman [1982]. The collection of papers edited by Weinert [1982]
provides an overview of the uses of RKHSs in statistical signal processing.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

130 Relationships between GPs and Other Models

We start with a formal definition of a RKHS, and then describe two specific
bases for a RKHS, firstly through Mercer’s theorem and the eigenfunctions of
k, and secondly through the reproducing kernel map.

Definition 6.1 (Reproducing kernel Hilbert space). Let H be a Hilbert space
of real functions f defined on an index set X . Then H is called a reproducing
kernel Hilbert space endowed with an inner product 〈·, ·〉H (and norm ‖f‖H =√
〈f, f〉H) if there exists a function k : X×X → R with the following properties:

1. for every x, k(x,x′) as a function of x′ belongs to H, and

2. k has the reproducing property 〈f(·), k(·,x)〉H = f(x). �reproducing property

See e.g. Schölkopf and Smola [2002] and Wegman [1982]. Note also that as
k(x, ·) and k(x′, ·) are in H we have that 〈k(x, ·), k(x′, ·)〉H = k(x,x′).

The RKHS uniquely determines k, and vice versa, as stated in the following
theorem:

Theorem 6.1 (Moore-Aronszajn theorem, Aronszajn [1950]). Let X be an in-
dex set. Then for every positive definite function k(·, ·) on X × X there exists
a unique RKHS, and vice versa. �

The Hilbert space L2 (which has the dot product 〈f, g〉L2 =
∫
f(x)g(x)dx)

contains many non-smooth functions. In L2 (which is not a RKHS) the delta
function is the representer of evaluation, i.e. f(x) =

∫
f(x′)δ(x−x′)dx′. Kernels

are the analogues of delta functions within the smoother RKHS. Note that the
delta function is not itself in L2; in contrast for a RKHS the kernel k is the
representer of evaluation and is itself in the RKHS.

The above description is perhaps rather abstract. For our purposes the key
intuition behind the RKHS formalism is that the squared norm ‖f‖2H can be
thought of as a generalization to functions of the n-dimensional quadratic form
f>K−1f we have seen in earlier chapters.

Consider a real positive semidefinite kernel k(x,x′) with an eigenfunction
expansion k(x,x′) =

∑N
i=1λiφi(x)φi(x′) relative to a measure µ. Recall from

Mercer’s theorem that the eigenfunctions are orthonormal w.r.t. µ, i.e. we have∫
φi(x)φj(x) dµ(x) = δij . We now consider a Hilbert space comprised of linear

combinations of the eigenfunctions, i.e. f(x) =
∑N

i=1fiφi(x) with
∑N

i=1f
2
i /λi <

∞. We assert that the inner product 〈f, g〉H in the Hilbert space betweeninner product
〈f, g〉H functions f(x) and g(x) =

∑N
i=1giφi(x) is defined as

〈f, g〉H =
N∑

i=1

figi

λi
. (6.1)

Thus this Hilbert space is equipped with a norm ‖f‖H where ‖f‖2H = 〈f, f〉H =∑N
i=1f

2
i /λi. Note that for ‖f‖H to be finite the sequence of coefficients {fi}

must decay quickly; effectively this imposes a smoothness condition on the
space.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.1 Reproducing Kernel Hilbert Spaces 131

We now need to show that this Hilbert space is the RKHS corresponding to
the kernel k, i.e. that it has the reproducing property. This is easily achieved
as

〈f(·), k(·,x)〉H =
N∑

i=1

fiλiφi(x)
λi

= f(x). (6.2)

Similarly

〈k(x, ·), k(x′, ·)〉H =
N∑

i=1

λiφi(x)λiφi(x′)
λi

= k(x,x′). (6.3)

Notice also that k(x, ·) is in the RKHS as it has norm
∑N

i=1(λiφi(x))2/λi =
k(x,x) < ∞. We have now demonstrated that the Hilbert space comprised of
linear combinations of the eigenfunctions with the restriction

∑N
i=1f

2
i /λi <∞

fulfils the two conditions given in Definition 6.1. As there is a unique RKHS
associated with k(·, ·), this Hilbert space must be that RKHS.

The advantage of the abstract formulation of the RKHS is that the eigenbasis
will change as we use different measures µ in Mercer’s theorem. However, the
RKHS norm is in fact solely a property of the kernel and is invariant under
this change of measure. This can be seen from the fact that the proof of the
RKHS properties above is not dependent on the measure; see also Kailath
[1971, sec. II.B]. A finite-dimensional example of this measure invariance is
explored in exercise 6.7.1.

Notice the analogy between the RKHS norm ‖f‖2H = 〈f, f〉H =
∑N

i=1f
2
i /λi

and the quadratic form f>K−1f ; if we express K and f in terms of the eigen-
vectors of K we obtain exactly the same form (but the sum has only n terms if
f has length n).

If we sample the coefficients fi in the eigenexpansion f(x) =
∑N

i=1fiφi(x)
from N (0, λi) then

E[‖f‖2H] =
N∑

i=1

E[f2
i]

λi
=

N∑
i=1

1. (6.4)

Thus if N is infinite the sample functions are not in H (with probability 1)
as the expected value of the RKHS norm is infinite; see Wahba [1990, p. 5]
and Kailath [1971, sec. II.B] for further details. However, note that although
sample functions of this Gaussian process are not in H, the posterior mean after
observing some data will lie in the RKHS, due to the smoothing properties of
averaging.

Another view of the RKHS can be obtained from the reproducing kernel
map construction. We consider the space of functions f defined as{

f(x) =
n∑

i=1

αik(x,xi) : n ∈ N, xi ∈ X , αi ∈ R
}
. (6.5)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

132 Relationships between GPs and Other Models

Now let g(x) =
∑n′

j=1α
′
jk(x,x

′
j). Then we define the inner product

〈f, g〉H =
n∑

i=1

n′∑
j=1

αiα
′
jk(xi,x′j). (6.6)

Clearly condition 1 of Definition 6.1 is fulfilled under the reproducing kernel
map construction. We can also demonstrate the reproducing property, as

〈k(·,x), f(·)〉H =
n∑

i=1

αik(x,xi) = f(x). (6.7)

6.2 Regularization

The problem of inferring an underlying function f(x) from a finite (and possibly
noisy) dataset without any additional assumptions is clearly “ill posed”. For
example, in the noise-free case, any function that passes through the given data
points is acceptable. Under a Bayesian approach our assumptions are charac-
terized by a prior over functions, and given some data, we obtain a posterior
over functions. The problem of bringing prior assumptions to bear has also
been addressed under the regularization viewpoint, where these assumptions
are encoded in terms of the smoothness of f .

We consider the functional

J [f] =
λ

2
‖f‖2H +Q(y, f), (6.8)

where y is the vector of targets we are predicting and f = (f(x1), . . . , f(xn))>

is the corresponding vector of function values, and λ is a scaling parameter that
trades off the two terms. The first term is called the regularizer and representsregularizer

smoothness assumptions on f as encoded by a suitable RKHS, and the second
term is a data-fit term assessing the quality of the prediction f(xi) for the
observed datum yi, e.g. the negative log likelihood.

Ridge regression (described in section 2.1) can be seen as a particular case(kernel) ridge regression

of regularization. Indeed, recalling that ‖f‖2H =
∑N

i=1f
2
i /λi where fi is the

coefficient of eigenfunction φi(x), we see that we are penalizing the weighted
squared coefficients. This is taking place in feature space, rather than simply in
input space, as per the standard formulation of ridge regression (see eq. (2.4)),
so it corresponds to kernel ridge regression.

The representer theorem shows that each minimizer f ∈ H of J [f] has therepresenter theorem

form f(x) =
∑n

i=1 αik(x,xi).1 The representer theorem was first stated by
Kimeldorf and Wahba [1971] for the case of squared error.2 O’Sullivan et al.
[1986] showed that the representer theorem could be extended to likelihood

1If the RKHS contains a null space of unpenalized functions then the given form is correct
modulo a term that lies in this null space. This is explained further in section 6.3.

2Schoenberg [1964] proved the representer theorem for the special case of cubic splines and
squared error. This was result extended to general RKHSs in Kimeldorf and Wahba [1971].

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.2 Regularization 133

functions arising from generalized linear models. The representer theorem can
be generalized still further, see e.g. Schölkopf and Smola [2002, sec. 4.2]. If the
data-fit term is convex (see section A.9) then there will be a unique minimizer
f̂ of J [f].

For Gaussian process prediction with likelihoods that involve the values of
f at the n training points only (so that Q(y, f) is the negative log likelihood
up to some terms not involving f), the analogue of the representer theorem is
obvious. This is because the predictive distribution of f(x∗) , f∗ at test point
x∗ given the data y is p(f∗|y) =

∫
p(f∗|f)p(f |y) df . As derived in eq. (3.22) we

have
E[f∗|y] = k(x∗)>K−1E[f |y] (6.9)

due to the formulae for the conditional distribution of a multivariate Gaussian.
Thus E[f∗|y] =

∑n
i=1αik(x∗,xi), where α = K−1E[f |y].

The regularization approach has a long tradition in inverse problems, dat-
ing back at least as far as Tikhonov [1963]; see also Tikhonov and Arsenin
[1977]. For the application of this approach in the machine learning literature
see e.g. Poggio and Girosi [1990].

In section 6.2.1 we consider RKHSs defined in terms of differential operators.
In section 6.2.2 we demonstrate how to solve the regularization problem in the
specific case of squared error, and in section 6.2.3 we compare and contrast the
regularization approach with the Gaussian process viewpoint.

6.2.1 Regularization Defined by Differential Operators ∗

For x ∈ RD define

‖Omf‖2 =
∫ ∑

j1+...+jD=m

(∂mf(x)
∂xj1

1 . . . xjD

D

)2

dx. (6.10)

For example for m = 2 and D = 2

‖O2f‖2 =
∫ [(∂2f

∂x2
1

)2

+ 2
(∂2f

∂x1∂x2

)2

+
(∂2f

∂x2
2

)2]
dx1 dx2. (6.11)

Now set ‖Pf‖2 =
∑M

m=0 am‖Omf‖2 with non-negative coefficients am. Notice
that ‖Pf‖2 is translation and rotation invariant.

In this section we assume that a0 > 0; if this is not the case and ak is
the first non-zero coefficient, then there is a null space of functions that are null space

unpenalized. For example if k = 2 then constant and linear functions are in the
null space. This case is dealt with in section 6.3.

‖Pf‖2 penalizes f in terms of the variability of its function values and
derivatives up to order M . How does this correspond to the RKHS formulation
of section 6.1? The key is to recognize that the complex exponentials exp(2πis ·
x) are eigenfunctions of the differential operator if X = RD. In this case

‖Pf‖2 =
∫ M∑

m=0

am(4π2s · s)m|f̃(s)|2ds, (6.12)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

134 Relationships between GPs and Other Models

where f̃(s) is the Fourier transform of f(x). Comparing eq. (6.12) with eq. (6.1)
we see that the kernel has the power spectrum

S(s) =
1∑M

m=0 am(4π2s · s)m
, (6.13)

and thus by Fourier inversion we obtain the stationary kernel

k(x) =
∫

e2πis·x∑M
m=0 am(4π2s · s)m

ds. (6.14)

A slightly different approach to obtaining the kernel is to use calculus of
variations to minimize J [f] with respect to f . The Euler-Lagrange equation
leads to

f(x) =
n∑

i=1

αiG(x− xi), (6.15)

with
M∑

m=0

(−1)mam∇2mG = δ(x− x′), (6.16)

where G(x,x′) is known as a Green’s function. Notice that the Green’s func-Green’s function
≡ kernel tion also depends on the boundary conditions. For the case of X = RD by

Fourier transforming eq. (6.16) we recognize that G is in fact the kernel k. The
differential operator

∑M
m=0(−1)mam∇2m and the integral operator k(·, ·) are in

fact inverses, as shown by eq. (6.16). See Poggio and Girosi [1990] for further
details. Arfken [1985] provides an introduction to calculus of variations and
Green’s functions. RKHSs for regularizers defined by differential operators are
Sobolev spaces; see e.g. Adams [1975] for further details on Sobolev spaces.

We now give two specific examples of kernels derived from differential oper-
ators.

Example 1. Set a0 = α2, a1 = 1 and am = 0 for m ≥ 2 in D = 1. Using
the Fourier pair e−α|x| ↔ 2α/(α2 + 4π2s2) we obtain k(x− x′) = 1

2αe
−α|x−x′|.

Note that this is the covariance function of the Ornstein-Uhlenbeck process, see
section 4.2.1.

Example 2. By setting am = σ2m

m!2m and using the power series ey =
∑∞

k=0 y
k/k!

we obtain

k(x− x′) =
∫

exp(2πis · (x− x′)) exp(−σ
2

2
(4π2s · s))ds (6.17)

=
1

(2πσ2)D/2
exp(− 1

2σ2
(x− x′)>(x− x′)), (6.18)

as shown by Yuille and Grzywacz [1989]. This is the squared exponential co-
variance function that we have seen earlier.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.2 Regularization 135

6.2.2 Obtaining the Regularized Solution

The representer theorem tells us the general form of the solution to eq. (6.8).
We now consider a specific functional

J [f] =
1
2
‖f‖2H +

1
2σ2

n

n∑
i=1

(yi − f(xi))2, (6.19)

which uses a squared error data-fit term (corresponding to the negative log
likelihood of a Gaussian noise model with variance σ2

n). Substituting f(x) =∑n
i=1αik(x,xi) and using 〈k(·,xi), k(·,xj)〉H = k(xi,xj) we obtain

J [α] =
1
2
α>Kα+

1
2σ2

n

|y −Kα|2

=
1
2
α>(K +

1
σ2

n

K2)α− 1
σ2

n

y>Kα+
1

2σ2
n

y>y.
(6.20)

Minimizing J by differentiating w.r.t. the vector of coefficients α we obtain
α̂ = (K + σ2

nI)
−1y, so that the prediction for a test point x∗ is f̂(x∗) =

k(x∗)>(K + σ2
nI)

−1y. This should look very familiar—it is exactly the form of
the predictive mean obtained in eq. (2.23). In the next section we compare and
contrast the regularization and GP views of the problem.

The solution f(x) =
∑n

i=1αik(x,xi) that minimizes eq. (6.19) was called a regularization network

regularization network in Poggio and Girosi [1990].

6.2.3 The Relationship of the Regularization View to Gaus-
sian Process Prediction

The regularization method returns f̂ = argminf J [f]. For a Gaussian process
predictor we obtain a posterior distribution over functions. Can we make a
connection between these two views? In fact we shall see in this section that f̂
can be viewed as the maximum a posteriori (MAP) function under the posterior.

Following Szeliski [1987] and Poggio and Girosi [1990] we consider

exp (−J [f]) = exp
(
− λ

2
‖Pf‖2

)
× exp (−Q(y, f)) . (6.21)

The first term on the RHS is a Gaussian process prior on f , and the second
is proportional to the likelihood. As f̂ is the minimizer of J [f], it is the MAP
function.

To get some intuition for the Gaussian process prior, imagine f(x) being
represented on a grid in x-space, so that f is now an (infinite dimensional) vector
f . Thus we obtain ‖Pf‖2 '

∑M
m=0 am(Dmf)>(Dmf) = f>(

∑
m amD

>
mDm)f

where Dm is an appropriate finite-difference approximation of the differential
operator Om. Observe that this prior term is a quadratic form in f .

To go into more detail concerning the MAP relationship we consider three
cases: (i) when Q(y, f) is quadratic (corresponding to a Gaussian likelihood);

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

136 Relationships between GPs and Other Models

(ii) when Q(y, f) is not quadratic but convex and (iii) when Q(y, f) is not
convex.

In case (i) we have seen in chapter 2 that the posterior mean function can
be obtained exactly, and the posterior is Gaussian. As the mean of a Gaussian
is also its mode this is the MAP solution. The correspondence between the GP
posterior mean and the solution of the regularization problem f̂ was made in
Kimeldorf and Wahba [1970].

In case (ii) we have seen in chapter 3 for classification problems using the
logistic, probit or softmax response functions that Q(y, f) is convex. Here the
MAP solution can be found by finding f̂ (the MAP solution to the n-dimensional
problem defined at the training points) and then extending it to other x-values
through the posterior mean conditioned on f̂ .

In case (iii) there will be more than one local minimum of J [f] under the
regularization approach. One could check these minima to find the deepest one.
However, in this case the argument for MAP is rather weak (especially if there
are multiple optima of similar depth) and suggests the need for a fully Bayesian
treatment.

While the regularization solution gives a part of the Gaussian process solu-
tion, there are the following limitations:

1. It does not characterize the uncertainty in the predictions, nor does it
handle well multimodality in the posterior.

2. The analysis is focussed at approximating the first level of Bayesian infer-
ence, concerning predictions for f . It is not usually extended to the next
level, e.g. to the computation of the marginal likelihood. The marginal
likelihood is very useful for setting any parameters of the covariance func-
tion, and for model comparison (see chapter 5).

In addition, we find the specification of smoothness via the penalties on deriva-
tives to be not very intuitive. The regularization viewpoint can be thought of
as directly specifying the inverse covariance rather than the covariance. As
marginalization is achieved for a Gaussian distribution directly from the covari-
ance (and not the inverse covariance) it seems more natural to us to specify
the covariance function. Also, while non-stationary covariance functions can
be obtained from the regularization viewpoint, e.g. by replacing the Lebesgue
measure in eq. (6.10) with a non-uniform measure µ(x), calculation of the cor-
responding covariance function can then be very difficult.

6.3 Spline Models

In section 6.2 we discussed regularizers which had a0 > 0 in eq. (6.12). We now
consider the case when a0 = 0; in particular we consider the regularizer to be
of the form ‖Omf‖2, as defined in eq. (6.10). In this case polynomials of degree

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.3 Spline Models 137

up to m − 1 are in the null space of the regularization operator, in that they
are not penalized at all.

In the case that X = RD we can again use Fourier techniques to ob-
tain the Green’s function G corresponding to the Euler-Lagrange equation
(−1)m∇2mG(x) = δ(x). The result, as shown by Duchon [1977] and Meinguet
[1979] is

G(x−x′) =
{
cm,D|x− x′|2m−D log |x− x′| if 2m > D and D even
cm,D|x− x′|2m−D otherwise, (6.22)

where cm,D is a constant (Wahba [1990, p. 31] gives the explicit form). Note that
the constraint 2m > D has to be imposed to avoid having a Green’s function
that is singular at the origin. Explicit calculation of the Green’s function for
other domains X is sometimes possible; for example see Wahba [1990, sec. 2.2]
for splines on the sphere.

Because of the null space, a minimizer of the regularization functional has
the form

f(x) =
n∑

i=1

αiG(x,xi) +
k∑

j=1

βjhj(x), (6.23)

where h1(x), . . . , hk(x) are polynomials that span the null space. The exact
values of the coefficients α and β for a specific problem can be obtained in
an analogous manner to the derivation in section 6.2.2; in fact the solution is
equivalent to that given in eq. (2.42).

To gain some more insight into the form of the Green’s function we consider
the equation (−1)m∇2mG(x) = δ(x) in Fourier space, leading to G̃(s) = (4π2s ·
s)−m. G̃(s) plays a rôle like that of the power spectrum in eq. (6.13), but notice
that

∫
G̃(s)ds is infinite, which would imply that the corresponding process has

infinite variance. The problem is of course that the null space is unpenalized; for
example any arbitrary constant function can be added to f without changing
the regularizer.

Because of the null space we have seen that one cannot obtain a simple
connection between the spline solution and a corresponding Gaussian process
problem. However, by introducing the notion of an intrinsic random function
(IRF) one can define a generalized covariance; see Cressie [1993, sec. 5.4] and IRF

Stein [1999, section 2.9] for details. The basic idea is to consider linear combina-
tions of f(x) of the form g(x) =

∑k
i=1 aif(x+δi) for which g(x) is second-order

stationary and where (hj(δ1), . . . , hj(δk))a = 0 for j = 1, . . . , k. A careful de-
scription of the equivalence of spline and IRF prediction is given in Kent and
Mardia [1994].

The power-law form of G̃(s) = (4π2s·s)−m means that there is no character-
istic length-scale for random functions drawn from this (improper) prior. Thus
we obtain the self-similar property characteristic of fractals; for further details
see Szeliski [1987] and Mandelbrot [1982]. Some authors argue that the lack
of a characteristic length-scale is appealing. This may sometimes be the case,
but if we believe there is an appropriate length-scale (or set of length-scales)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

138 Relationships between GPs and Other Models

for a given problem but this is unknown in advance, we would argue that a
hierarchical Bayesian formulation of the problem (as described in chapter 5)
would be more appropriate.

Splines were originally introduced for one-dimensional interpolation and
smoothing problems, and then generalized to the multivariate setting. Schoen-
berg [1964] considered the problem of finding the function that minimizesspline interpolation ∫ b

a

(f (m)(x))2 dx, (6.24)

where f (m) denotes the m’th derivative of f , subject to the interpolation con-
straints f(xi) = fi, xi ∈ (a, b) for i = 1, . . . , n and for f in an appropriate
Sobolev space. He showed that the solution is the natural polynomial spline,natural polynomial

spline which is a piecewise polynomial of order 2m − 1 in each interval [xi, xi+1],
i = 1, . . . , n− 1, and of order m− 1 in the two outermost intervals. The pieces
are joined so that the solution has 2m − 2 continuous derivatives. Schoen-
berg also proved that the solution to the univariate smoothing problem (seesmoothing spline

eq. (6.19)) is a natural polynomial spline. A common choice is m = 2, leading
to the cubic spline. One possible way of writing this solution is

f(x) =
1∑

j=0

βjx
j +

n∑
i=1

αi(x− xi)3+, where (x)+ =
{
x if x > 0
0 otherwise. (6.25)

It turns out that the coefficients α and β can be computed in time O(n) using
an algorithm due to Reinsch; see Green and Silverman [1994, sec. 2.3.3] for
details.

Splines were first used in regression problems. However, by using general-
ized linear modelling [McCullagh and Nelder, 1983] they can be extended to
classification problems and other non-Gaussian likelihoods, as we did for GP
classification in section 3.3. Early references in this direction include Silverman
[1978] and O’Sullivan et al. [1986].

There is a vast literature in relation to splines in both the statistics and
numerical analysis literatures; for entry points see citations in Wahba [1990]
and Green and Silverman [1994].

6.3.1 A 1-d Gaussian Process Spline Construction∗

In this section we will further clarify the relationship between splines and Gaus-
sian processes by giving a GP construction for the solution of the univariate
cubic spline smoothing problem whose cost functional is

n∑
i=1

(
f(xi)− yi

)2 + λ

∫ 1

0

(
f ′′(x)

)2
dx, (6.26)

where the observed data are {(xi, yi)|i = 1, . . . , n, 0 < x1 < · · · < xn < 1} and
λ is a smoothing parameter controlling the trade-off between the first term, the

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.3 Spline Models 139

data-fit, and the second term, the regularizer, or complexity penalty. Recall
that the solution is a piecewise polynomial as in eq. (6.25).

Following Wahba [1978], we consider the random function

g(x) =
1∑

j=0

βjx
j + f(x) (6.27)

where β ∼ N (0, σ2
β I) and f(x) is a Gaussian process with covariance σ2

fksp(x, x′),
where

ksp(x, x′) ,
∫ 1

0

(x− u)+(x′ − u)+ du =
|x− x′|v2

2
+
v3

3
, (6.28)

and v = min(x, x′).

To complete the analogue of the regularizer in eq. (6.26), we need to remove
any penalty on polynomial terms in the null space by making the prior vague,
i.e. by taking the limit σ2

β → ∞. Notice that the covariance has the form of
contributions from explicit basis functions, h(x) = (1, x)> and a regular covari-
ance function ksp(x, x′), a problem which we have already studied in section 2.7.
Indeed we have computed the limit where the prior becomes vague σ2

β → ∞,
the result is given in eq. (2.42).

Plugging into the mean equation from eq. (2.42), we get the predictive mean

f̄(x∗) = k(x∗)>K−1
y (y −H>β̄) + h(x∗)>β̄, (6.29)

where Ky is the covariance matrix corresponding to σ2
fksp(xi, xj) + σ2

nδij eval-
uated at the training points, H is the matrix that collects the h(xi) vectors at
all training points, and β̄ = (HK−1

y H>)−1HK−1
y y is given below eq. (2.42).

It is not difficult to show that this predictive mean function is a piecewise cu-
bic polynomial, since the elements of k(x∗) are piecewise3 cubic polynomials.
Showing that the mean function is a first order polynomial in the outer intervals
[0, x1] and [xn, 1] is left as exercise 6.7.3.

So far ksp has been produced rather mysteriously “from the hat”; we now
provide some explanation. Shepp [1966] defined the l-fold integrated Wiener
process as

Wl(x) =
∫ 1

0

(x− u)l
+

l!
Z(u)du, l = 0, 1, . . . (6.30)

where Z(u) denotes the Gaussian white noise process with covariance δ(u−u′).
Note that W0 is the standard Wiener process. It is easy to show that ksp(x, x′)
is the covariance of the once-integrated Wiener process by writing W1(x) and
W1(x′) using eq. (6.30) and taking the expectation using the covariance of the
white noise process. Note that Wl is the solution to the stochastic differential
equation (SDE) X(l+1) = Z; see Appendix B for further details on SDEs. Thus

3The pieces are joined at the datapoints, the points where the min(x, x′) from the covari-
ance function is non-differentiable.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

140 Relationships between GPs and Other Models

−5 0 5

−4

−3

−2

−1

0

1

2

input, x

ou
tp

ut
, y

−5 0 5

−4

−3

−2

−1

0

1

2

input, x

ou
tp

ut
, y

(a), spline covariance (b), squared exponential cov.

Figure 6.1: Panel (a) shows the application of the spline covariance to a simple
dataset. The full line shows the predictive mean, which is a piecewise cubic polyno-
mial, and the grey area indicates the 95% confidence area. The two thin dashed and
dash-dotted lines are samples from the posterior. Note that the posterior samples
are not as smooth as the mean. For comparison a GP using the squared exponential
covariance function is shown in panel (b). The hyperparameters in both cases were
optimized using the marginal likelihood.

for the cubic spline we set l = 1 to obtain the SDE X ′′ = Z, corresponding to
the regularizer

∫
(f ′′(x))2dx.

We can also give an explicit basis-function construction for the covariance
function ksp. Consider the family of random functions given by

fN (x) =
1√
N

N−1∑
i=0

γi(x−
i

N
)+, (6.31)

where γ is a vector of parameters with γ ∼ N (0, I). Note that the sum has
the form of evenly spaced “ramps” whose magnitudes are given by the entries
in the γ vector. Thus

E[fN (x)fN (x′)] =
1
N

N−1∑
i=0

(x− i

N
)+(x′ − i

N
)+. (6.32)

Taking the limit N →∞, we obtain eq. (6.28), a derivation which is also found
in [Vapnik, 1998, sec. 11.6].

Notice that the covariance function ksp given in eq. (6.28) corresponds to a
Gaussian process which is MS continuous but only once MS differentiable. Thus
samples from the prior will be quite “rough”, although (as noted in section 6.1)
the posterior mean, eq. (6.25), is smoother.

The constructions above can be generalized to the regularizer
∫

(f (m)(x))2 dx
by replacing (x − u)+ with (x − u)m−1

+ /(m − 1)! in eq. (6.28) and similarly in
eq. (6.32), and setting h(x) = (1, x, . . . , xm−1)>.

Thus, we can use a Gaussian process formulation as an alternative to the
usual spline fitting procedure. Note that the trade-off parameter λ from eq. (6.26)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.4 Support Vector Machines 141

xi

xj

��

��

��

��

��

�

�

�

�

�

w · x + w0 < 0

w · x + w0 > 0

.

��

��

��

��

��

�

�

�

�

�

w

margin

xi

xj

.

(a) (b)

Figure 6.2: Panel (a) shows a linearly separable binary classification problem, and a
separating hyperplane. Panel (b) shows the maximum margin hyperplane.

is now given as the ratio σ2
n/σ

2
f . The hyperparameters σ2

f and σ2
n can be set

using the techniques from section 5.4.1 by optimizing the marginal likelihood
given in eq. (2.45). Kohn and Ansley [1987] give details of an O(n) algorithm
(based on Kalman filtering) for the computation of the spline and the marginal
likelihood. In addition to the predictive mean the GP treatment also yields an
explicit estimate of the noise level and predictive error bars. Figure 6.1 shows
a simple example. Notice that whereas the mean function is a piecewise cubic
polynomial, samples from the posterior are not smooth. In contrast, for the
squared exponential covariance functions shown in panel (b), both the mean
and functions drawn from the posterior are infinitely differentiable.

6.4 Support Vector Machines ∗

Since the mid 1990’s there has been an explosion of interest in kernel machines,
and in particular the support vector machine (SVM). The aim of this section
is to provide a brief introduction to SVMs and in particular to compare them
to Gaussian process predictors. We consider SVMs for classification and re-
gression problems in sections 6.4.1 and 6.4.2 respectively. More comprehensive
treatments can be found in Vapnik [1995], Cristianini and Shawe-Taylor [2000]
and Schölkopf and Smola [2002].

6.4.1 Support Vector Classification

For support vector classifiers, the key notion that we need to introduce is that
of the maximum margin hyperplane for a linear classifier. Then by using the
“kernel trick” this can be lifted into feature space. We consider first the sep-
arable case and then the non-separable case. We conclude this section with a
comparison between GP classifiers and SVMs.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

142 Relationships between GPs and Other Models

The Separable Case

Figure 6.2(a) illustrates the case where the data is linearly separable. For a
linear classifier with weight vector w and offset w0, let the decision boundary
be defined by w · x + w0 = 0, and let w̃ = (w, w0). Clearly, there is a whole
version space of weight vectors that give rise to the same classification of the
training points. The SVM algorithm chooses a particular weight vector, that
gives rise to the “maximum margin” of separation.

Let the training set be pairs of the form (xi, yi) for i = 1, . . . , n, where yi =
±1. For a given weight vector we can compute the quantity γ̃i = yi(w ·x+w0),
which is known as the functional margin. Notice that γ̃i > 0 if a training pointfunctional margin

is correctly classified.

If the equation f(x) = w · x + w0 defines a discriminant function (so that
the output is sgn(f(x))), then the hyperplane cw · x + cw0 defines the same
discriminant function for any c > 0. Thus we have the freedom to choose the
scaling of w̃ so that mini γ̃i = 1, and in this case w̃ is known as the canonical
form of the hyperplane.

The geometrical margin is defined as γi = γ̃i/|w|. For a training point xigeometrical margin

that is correctly classified this is simply the distance from xi to the hyperplane.
To see this, let c = 1/|w| so that ŵ = w/|w| is a unit vector in the direction
of w, and ŵ0 is the corresponding offset. Then ŵ · x computes the length
of the projection of x onto the direction orthogonal to the hyperplane and
ŵ ·x+ŵ0 computes the distance to the hyperplane. For training points that are
misclassified the geometrical margin is the negative distance to the hyperplane.

The geometrical margin for a dataset D is defined as γD = mini γi. Thus
for a canonical separating hyperplane the margin is 1/|w|. We wish to find the
maximum margin hyperplane, i.e. the one that maximizes γD.

By considering canonical hyperplanes, we are thus led to the following op-
timization problem to determine the maximum margin hyperplane:optimization problem

minimize
1
2
|w|2 over w, w0

subject to yi(w · xi + w0) ≥ 1 for all i = 1, . . . , n. (6.33)

It is clear by considering the geometry that for the maximum margin solution
there will be at least one data point in each class for which yi(w·xi+w0) = 1, see
Figure 6.2(b). Let the hyperplanes that pass through these points be denoted
H+ and H− respectively.

This constrained optimization problem can be set up using Lagrange multi-
pliers, and solved using numerical methods for quadratic programming4 (QP)
problems. The form of the solution is

w =
∑

i

λiyixi, (6.34)

4A quadratic programming problem is an optimization problem where the objective func-
tion is quadratic and the constraints are linear in the unknowns.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.4 Support Vector Machines 143

where the λi’s are non-negative Lagrange multipliers. Notice that the solution
is a linear combination of the xi’s.

The key feature of equation 6.34 is that λi is zero for every xi except those
which lie on the hyperplanes H+ or H−; these points are called the support
vectors. The fact that not all of the training points contribute to the final support vectors

solution is referred to as the sparsity of the solution. The support vectors
lie closest to the decision boundary. Note that if all of the other training
points were removed (or moved around, but not crossing H+ or H−) the same
maximum margin hyperplane would be found. The quadratic programming
problem for finding the λi’s is convex, i.e. there are no local minima. Notice
the similarity of this to the convexity of the optimization problem for Gaussian
process classifiers, as described in section 3.4.

To make predictions for a new input x∗ we compute

sgn(w · x∗ + w0) = sgn
(n∑

i=1

λiyi(xi · x∗) + w0

)
. (6.35)

In the QP problem and in eq. (6.35) the training points {xi} and the test point
x∗ enter the computations only in terms of inner products. Thus by using the
kernel trick we can replace occurrences of the inner product by the kernel to kernel trick

obtain the equivalent result in feature space.

The Non-Separable Case

For linear classifiers in the original x space there will be some datasets that
are not linearly separable. One way to generalize the SVM problem in this
case is to allow violations of the constraint yi(w · xi +w0) ≥ 1 but to impose a
penalty when this occurs. This leads to the soft margin support vector machine soft margin

problem, the minimization of

1
2
|w|2 + C

n∑
i=1

(1− yifi)+ (6.36)

with respect to w and w0, where fi = f(xi) = w · xi + w0 and (z)+ = z if
z > 0 and 0 otherwise. Here C > 0 is a parameter that specifies the relative
importance of the two terms. This convex optimization problem can again be
solved using QP methods and yields a solution of the form given in eq. (6.34). In
this case the support vectors (those with λi 6= 0) are not only those data points
which lie on the separating hyperplanes, but also those that incur penalties.
This can occur in two ways (i) the data point falls in between H+ and H− but
on the correct side of the decision surface, or (ii) the data point falls on the
wrong side of the decision surface.

In a feature space of dimension N , if N > n then there will always be
separating hyperplane. However, this hyperplane may not give rise to good
generalization performance, especially if some of the labels are incorrect, and
thus the soft margin SVM formulation is often used in practice.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

144 Relationships between GPs and Other Models

−2 0 1 4
0

1

2

log(1 + exp(−z))
−log Φ(z)
max(1−z, 0)

z

gε(z)

−ε 0 −ε
.

(a) (b)

Figure 6.3: (a) A comparison of the hinge error, gλ and gΦ. (b) The ε-insensitive
error function used in SVR.

For both the hard and soft margin SVM QP problems a wide variety of
algorithms have been developed for their solution; see Schölkopf and Smola
[2002, ch. 10] for details. Basic interior point methods involve inversions of n×n
matrices and thus scale asO(n3), as with Gaussian process prediction. However,
there are other algorithms, such as the sequential minimal optimization (SMO)
algorithm due to Platt [1999], which often have better scaling in practice.

Above we have described SVMs for the two-class (binary) classification prob-
lem. There are many ways of generalizing SVMs to the multi-class problem,
see Schölkopf and Smola [2002, sec. 7.6] for further details.

Comparing Support Vector and Gaussian Process Classifiers

For the soft margin classifier we obtain a solution of the form w =
∑

i αixi

(with αi = λiyi) and thus |w|2 =
∑

i,j αiαj(xi ·xj). Kernelizing this we obtain
|w|2 = α>Kα = f>K−1f , as5 Kα = f . Thus the soft margin objective
function can be written as

1
2
f>K−1f + C

n∑
i=1

(1− yifi)+. (6.37)

For the binary GP classifier, to obtain the MAP value f̂ of p(f |y) we minimize
the quantity

1
2
f>K−1f −

n∑
i=1

log p(yi|fi), (6.38)

cf. eq. (3.12). (The final two terms in eq. (3.12) are constant if the kernel is
fixed.)

For log-concave likelihoods (such as those derived from the logistic or pro-
bit response functions) there is a strong similarity between the two optimiza-
tion problems in that they are both convex. Let gλ(z) , log(1 + e−z), gΦ =

5Here the offset w0 has been absorbed into the kernel so it is not an explicit extra param-
eter.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.4 Support Vector Machines 145

− log Φ(z), and ghinge(z) , (1 − z)+ where z = yifi. We refer to ghinge as the
hinge error function, due to its shape. As shown in Figure 6.3(a) all three data hinge error function

fit terms are monotonically decreasing functions of z. All three functions tend
to infinity as z → −∞ and decay to zero as z →∞. The key difference is that
the hinge function takes on the value 0 for z ≥ 1, while the other two just decay
slowly. It is this flat part of the hinge function that gives rise to the sparsity of
the SVM solution.

Thus there is a close correspondence between the MAP solution of the GP
classifier and the SVM solution. Can this correspondence be made closer by
considering the hinge function as a negative log likelihood? The answer to this
is no [Seeger, 2000, Sollich, 2002]. If Cghinge(z) defined a negative log likelihood,
then exp(−Cghinge(f))+ exp(−Cghinge(−f)) should be a constant independent
of f , but this is not the case. To see this, consider the quantity

ν(f ;C) = κ(C)[exp(−C(1− f)+) + exp(−C(1 + f)+)]. (6.39)

κ(C) cannot be chosen so as to make ν(f ;C) = 1 independent of the value
of f for C > 0. By comparison, for the logistic and probit likelihoods the
analogous expression is equal to 1. Sollich [2002] suggests choosing κ(C) =
1/(1 + exp(−2C)) which ensures that ν(f, C) ≤ 1 (with equality only when
f = ±1). He also gives an ingenious interpretation (involving a “don’t know”
class to soak up the unassigned probability mass) that does yield the SVM
solution as the MAP solution to a certain Bayesian problem, although we find
this construction rather contrived. Exercise 6.7.2 invites you to plot ν(f ;C) as
a function of f for various values of C.

One attraction of the GP classifier is that it produces an output with a
clear probabilistic interpretation, a prediction for p(y = +1|x). One can try
to interpret the function value f(x) output by the SVM probabilistically, and
Platt [2000] suggested that probabilistic predictions can be generated from the
SVM by computing σ(af(x) + b) for some constants a, b that are fitted using
some “unbiased version” of the training set (e.g. using cross-validation). One
disadvantage of this rather ad hoc procedure is that unlike the GP classifiers
it does not take into account the predictive variance of f(x) (cf. eq. (3.25)).
Seeger [2003, sec. 4.7.2] shows that better error-reject curves can be obtained
on an experiment using the MNIST digit classification problem when the effect
of this uncertainty is taken into account.

6.4.2 Support Vector Regression

The SVM was originally introduced for the classification problem, then extended
to deal with the regression case. The key concept is that of the ε-insensitive
error function. This is defined as

gε(z) =
{
|z| − ε if |z| ≥ ε,
0 otherwise. (6.40)

This function is plotted in Figure 6.3(b). As in eq. (6.21) we can interpret
exp(−gε(z)) as a likelihood model for the regression residuals (c.f. the squared

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

146 Relationships between GPs and Other Models

error function corresponding to a Gaussian model). However, we note that
this is quite an unusual choice of model for the distribution of residuals and
is basically motivated by the desire to obtain a sparse solution (see below)
as in support vector classifier. If ε = 0 then the error model is a Laplacian
distribution, which corresponds to least absolute values regression (Edgeworth
[1887], cited in Rousseeuw [1984]); this is a heavier-tailed distribution than the
Gaussian and provides some protection against outliers. Girosi [1991] showed
that the Laplacian distribution can be viewed as a continuous mixture of zero-
mean Gaussians with a certain distribution over their variances. Pontil et al.
[1998] extended this result by allowing the means to uniformly shift in [−ε, ε]
in order to obtain a probabilistic model corresponding to the ε-insensitive error
function. See also section 9.3 for work on robustification of the GP regression
problem.

For the linear regression case with an ε-insensitive error function and a
Gaussian prior on w, the MAP value of w is obtained by minimizing

1
2
|w|2 + C

n∑
i=1

gε(yi − fi) (6.41)

w.r.t. w. The solution6 is f(x∗) =
∑n

i=1 αixi · x∗ where the coefficients α are
obtained from a QP problem. The problem can also be kernelized to give the
solution f(x∗) =

∑n
i=1 αik(xi,x∗).

As for support vector classification, many of the coefficients αi are zero. The
data points which lie inside the ε-“tube” have αi = 0, while those on the edge
or outside have non-zero αi.

6.5 Least-squares Classification∗

In chapter 3 we have argued that the use of logistic or probit likelihoods pro-
vides the natural route to develop a GP classifier, and that it is attractive in
that the outputs can be interpreted probabilistically. However, there is an even
simpler approach which treats classification as a regression problem.

Our starting point is binary classification using the linear predictor f(x) =
w>x. This is trained using linear regression with a target y+ for patterns that
have label +1, and target y− for patterns that have label −1. (Targets y+, y−
give slightly more flexibility than just using targets of ±1.) As shown in Duda
and Hart [1973, section 5.8], choosing y+, y− appropriately allows us to obtain
the same solution as Fisher’s linear discriminant using the decision criterion
f(x) ≷ 0. Also, they show that using targets y+ = +1, y− = −1 with the
least-squares error function gives a minimum squared-error approximation to
the Bayes discriminant function p(C+|x)−p(C−|x) as n→∞. Following Rifkin
and Klautau [2004] we call such methods least-squares classification (LSC). Note
that under a probabilistic interpretation the squared-error criterion is rather an

6Here we have assumed that the constant 1 is included in the input vector x.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.5 Least-squares Classification 147

odd choice as it implies a Gaussian noise model, yet only two values of the
target (y+ and y−) are observed.

It is natural to extend the least-squares classifier using the kernel trick.
This has been suggested by a number of authors including Poggio and Girosi
[1990] and Suykens and Vanderwalle [1999]. Experimental results reported in
Rifkin and Klautau [2004] indicate that performance comparable to SVMs can
be obtained using kernel LSC (or as they call it the regularized least-squares
classifier, RLSC).

Consider a single random variable y which takes on the value +1 with proba-
bility p and value−1 with probability 1−p. Then the value of f which minimizes
the squared error function E = p(f − 1)2 + (1− p)(f + 1)2 is f̂ = 2p− 1, which
is a linear rescaling of p to the interval [−1, 1]. (Equivalently if the targets are
1 and 0, we obtain f̂ = p.) Hence we observe that LSC will estimate p correctly
in the large data limit. If we now consider not just a single random variable,
but wish to estimate p(C+|x) (or a linear rescaling of it), then as long as the
approximating function f(x) is sufficiently flexible, we would expect that in the
limit n → ∞ it would converge to p(C+|x). (For more technical detail on this
issue, see section 7.2.1 on consistency.) Hence LSC is quite a sensible procedure
for classification, although note that there is no guarantee that f(x) will be
constrained to lie in the interval [y−, y+]. If we wish to guarantee a proba-
bilistic interpretation, we could “squash” the predictions through a sigmoid, as
suggested for SVMs by Platt [2000] and described on page 145.

When generalizing from the binary to multi-class situation there is some
freedom as to how to set the problem up. Schölkopf and Smola [2002, sec. 7.6]
identify four methods, namely one-versus-rest (where C binary classifiers are
trained to classify each class against all the rest), all pairs (where C(C − 1)/2
binary classifiers are trained), error-correcting output coding (where each class
is assigned a binary codeword, and binary classifiers are trained on each bit
separately), and multi-class objective functions (where the aim is to train C
classifiers simultaneously rather than creating a number of binary classification
problems). One also needs to specify how the outputs of the various classifiers
that are trained are combined so as to produce an overall answer. For the
one-versus-rest7 method one simple criterion is to choose the classifier which
produces the most positive output. Rifkin and Klautau [2004] performed ex-
tensive experiments and came to the conclusion that the one-versus-rest scheme
using either SVMs or RLSC is as accurate as any other method overall, and
has the merit of being conceptually simple and straightforward to implement.

6.5.1 Probabilistic Least-squares Classification

The LSC algorithm discussed above is attractive from a computational point
of view, but to guarantee a valid probabilistic interpretation one may need
to use a separate post-processing stage to “squash” the predictions through a
sigmoid. However, it is not so easy to enforce a probabilistic interpretation

7This method is also sometimes called one-versus-all.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

148 Relationships between GPs and Other Models

during the training stage. One possible solution is to combine the ideas of
training using leave-one-out cross-validation, covered in section 5.4.2, with the
use of a (parameterized) sigmoid function, as in Platt [2000]. We will call this
method the probabilistic least-squares classifier (PLSC).

In section 5.4.2 we saw how to compute the Gaussian leave-one-out (LOO)
predictive probabilities, and that training of hyperparameters can be based
on the sum of the log LOO probabilities. Using this idea, we express the LOO
probability by squashing a linear function of the Gaussian predictive probability
through a cumulative Gaussian

p(yi|X,y−i,θ) =
∫

Φ
(
yi(αfi + β)

)
N (fi|µi, σ

2
i) dfi

= Φ
(yi(αµi + β)√

1 + α2σ2
i

)
,

(6.42)

where the integral is given in eq. (3.82) and the leave-one-out predictive mean µi

and variance σ2
i are given in eq. (5.12). The objective function is the sum of the

log LOO probabilities, eq. (5.11) which can be used to set the hyperparameters
as well as the two additional parameters of the linear transformation, α and β in
eq. (6.42). Introducing the likelihood in eq. (6.42) into the objective eq. (5.11)
and taking derivatives we obtain

∂LLOO

∂θj
=

n∑
i=1

∂ log p(yi|X,y−i,θ)
∂µi

∂µi

∂θj
+
∂ log p(yi|X,y−i,θ)

∂σ2
i

∂σ2
i

∂θj

=
n∑

i=1

N (ri)
Φ(yiri)

yiα√
1 + α2σ2

i

(∂µi

∂θj
− α(αµi + β)

2(1 + α2σ2
i)
∂σ2

i

∂θj

)
,

(6.43)

where ri = (αµi + β)/
√

1 + α2σ2
i and the partial derivatives of the Gaussian

LOO parameters ∂µi/∂θj and ∂σ2
i /∂θj are given in eq. (5.13). Finally, for the

linear transformation parameters we have

∂LLOO

∂α
=

n∑
i=1

N (ri)
Φ(yiri)

yi√
1 + α2σ2

i

µi − βασ2
i

1 + α2σ2
i

,

∂LLOO

∂β
=

n∑
i=1

N (ri)
Φ(yiri)

yi√
1 + α2σ2

i

.

(6.44)

These partial derivatives can be used to train the parameters of the GP. There
are several options on how to do predictions, but the most natural would seem
to be to compute predictive mean and variance and squash it through the
sigmoid, parallelling eq. (6.42). Applying this model to the USPS 3s vs. 5s
binary classification task discussed in section 3.7.3, we get a test set error rate
of 12/773 = 0.0155%, which compares favourably with the results reported for
other methods in Figure 3.10. However, the test set information is only 0.77
bits,8 which is very poor.

8The test information is dominated by a single test case, which is predicted confidently
to belong to the wrong class. Visual inspection of the digit reveals that indeed it looks as
though the testset label is wrong for this case. This observation highlights the danger of not
explicitly allowing for data mislabelling in the model for this kind of data.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

6.6 Relevance Vector Machines 149

6.6 Relevance Vector Machines ∗

Although usually not presented as such, the relevance vector machine (RVM)
introduced by Tipping [2001] is actually a special case of a Gaussian process.
The covariance function has the form

k(x,x′) =
N∑

j=1

1
αj
φj(x)φj(x′), (6.45)

where αj are hyperparameters and the N basis functions φj(x) are usually, but
not necessarily taken to be Gaussian-shaped basis functions centered on each
of the n training data points

φj(x) = exp
(
− |x− xj |2

2`2
)
, (6.46)

where ` is a length-scale hyperparameter controlling the width of the basis
function. Notice that this is simply the construction for the covariance function
corresponding to an N -dimensional set of basis functions given in section 2.1.2,
with Σp = diag(α−1

1 , . . . , α−1
N).

The covariance function in eq. (6.45) has two interesting properties: firstly,
it is clear that the feature space corresponding to the covariance function is
finite dimensional, i.e. the covariance function is degenerate, and secondly the
covariance function has the odd property that it depends on the training data.
This dependency means that the prior over functions depends on the data, a
property which is at odds with a strict Bayesian interpretation. Although the
usual treatment of the model is still possible, this dependency of the prior on
the data may lead to some surprising effects, as discussed below.

Training the RVM is analogous to other GP models: optimize the marginal
likelihood w.r.t. the hyperparameters. This optimization often leads to a sig-
nificant number of the αj hyperparameters tending towards infinity, effectively
removing, or pruning, the corresponding basis function from the covariance
function in eq. (6.45). The basic idea is that basis functions that are not sig-
nificantly contributing to explaining the data should be removed, resulting in
a sparse model. The basis functions that survive are called relevance vectors. relevance vectors

Empirically it is often observed that the number of relevance vectors is smaller
than the number of support vectors on the same problem [Tipping, 2001].

The original RVM algorithm [Tipping, 2001] was not able to exploit the
sparsity very effectively during model fitting as it was initialized with all of the
αis set to finite values, meaning that all of the basis functions contributed to
the model. However, careful analysis of the RVM marginal likelihood by Faul
and Tipping [2002] showed that one can carry out optimization w.r.t. a single
αi analytically. This has led to the accelerated training algorithm described
in Tipping and Faul [2003] which starts with an empty model (i.e. all αis set
to infinity) and adds basis functions sequentially. As the number of relevance
vectors is (usually much) less than the number of training cases it will often
be much faster to train and make predictions using a RVM than a non-sparse

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

150 Relationships between GPs and Other Models

GP. Also note that the basis functions can include additional hyperparameters,
e.g. one could use an automatic relevance determination (ARD) form of basis
function by using different length-scales on different dimensions in eq. (6.46).
These additional hyperparameters could also be set by optimizing the marginal
likelihood.

The use of a degenerate covariance function which depends on the data
has some undesirable effects. Imagine a test point, x∗, which lies far away
from the relevance vectors. At x∗ all basis functions will have values close to
zero, and since no basis function can give any appreciable signal, the predictive
distribution will be a Gaussian with a mean close to zero and variance close
to zero (or to the inferred noise level). This behaviour is undesirable, and
could lead to dangerously false conclusions. If the x∗ is far from the relevance
vectors, then the model shouldn’t be able to draw strong conclusions about
the output (we are extrapolating), but the predictive uncertainty becomes very
small—this is the opposite behaviour of what we would expect from a reasonable
model. Here, we have argued that for localized basis functions, the RVM has
undesirable properties, but as argued in Rasmussen and Quiñonero-Candela
[2005] it is actually the degeneracy of the covariance function which is the
core of the problem. Although the work of Rasmussen and Quiñonero-Candela
[2005] goes some way towards fixing the problem, there is an inherent conflict:
degeneracy of the covariance function is good for computational reasons, but
bad for modelling reasons.

6.7 Exercises

1. We motivate the fact that the RKHS norm does not depend on the den-
sity p(x) using a finite-dimensional analogue. Consider the n-dimensional
vector f , and let the n×n matrix Φ be comprised of non-colinear columns
φ1, . . . ,φn. Then f can be expressed as a linear combination of these ba-
sis vectors f =

∑n
i=1 ciφi = Φc for some coefficients {ci}. Let the φs

be eigenvectors of the covariance matrix K w.r.t. a diagonal matrix P
with non-negative entries, so that KPΦ = ΦΛ, where Λ is a diagonal
matrix containing the eigenvalues. Note that Φ>PΦ = In. Show that∑n

i=1 c
2
i /λi = c>Λ−1c = f>K−1f , and thus observe that f>K−1f can be

expressed as c>Λ−1c for any valid P and corresponding Φ. Hint: you
may find it useful to set Φ̃ = P 1/2Φ, K̃ = P 1/2KP 1/2 etc.

2. Plot eq. (6.39) as a function of f for different values of C. Show that
there is no value of C and κ(C) which makes ν(f ;C) equal to 1 for all
values of f . Try setting κ(C) = 1/(1 + exp(−2C)) as suggested in Sollich
[2002] and observe what effect this has.

3. Show that the predictive mean for the spline covariance GP in eq. (6.29)
is a linear function of x∗ when x∗ is located either to the left or to the
right of all training points. Hint: consider the eigenvectors corresponding
to the two largest eigenvalues of the training set covariance matrix from
eq. (2.40) in the vague limit.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Chapter 7

Theoretical Perspectives

This chapter covers a number of more theoretical issues relating to Gaussian
processes. In section 2.6 we saw how GPR carries out a linear smoothing of the
datapoints using the weight function. The form of the weight function can be
understood in terms of the equivalent kernel, which is discussed in section 7.1.

As one gets more and more data, one would hope that the GP predictions
would converge to the true underlying predictive distribution. This question
of consistency is reviewed in section 7.2, where we also discuss the concepts of
equivalence and orthogonality of GPs.

When the generating process for the data is assumed to be a GP it is particu-
larly easy to obtain results for learning curves which describe how the accuracy
of the predictor increases as a function of n, as described in section 7.3. An
alternative approach to the analysis of generalization error is provided by the
PAC-Bayesian analysis discussed in section 7.4. Here we seek to relate (with
high probability) the error observed on the training set to the generalization
error of the GP predictor.

Gaussian processes are just one of the many methods that have been devel-
oped for supervised learning problems. In section 7.5 we compare and contrast
GP predictors with other supervised learning methods.

7.1 The Equivalent Kernel

In this section we consider regression problems. We have seen in section 6.2
that the posterior mean for GP regression can be obtained as the function which
minimizes the functional

J [f] =
1
2
‖f‖2H +

1
2σ2

n

n∑
i=1

(
yi − f(xi)

)2
, (7.1)

where ‖f‖H is the RKHS norm corresponding to kernel k. Our goal is now to
understand the behaviour of this solution as n→∞.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

152 Theoretical Perspectives

Let µ(x, y) be the probability measure from which the data pairs (xi, yi) are
generated. Observe that

E
[n∑

i=1

(
yi − f(xi)

)2] = n

∫ (
y − f(x)

)2
dµ(x, y). (7.2)

Let η(x) = E[y|x] be the regression function corresponding to the probability
measure µ. The variance around η(x) is denoted σ2(x) =

∫
(y− η(x))2dµ(y|x).

Then writing y − f = (y − η) + (η − f) we obtain∫ (
y − f(x)

)2
dµ(x, y) =

∫ (
η(x)− f(x)

)2
dµ(x) +

∫
σ2(x) dµ(x), (7.3)

as the cross term vanishes due to the definition of η(x).

As the second term on the right hand side of eq. (7.3) is independent of f ,
an idealization of the regression problem consists of minimizing the functional

Jµ[f] =
n

2σ2
n

∫ (
η(x)− f(x)

)2
dµ(x) +

1
2
‖f‖2H. (7.4)

The form of the minimizing solution is most easily understood in terms of the
eigenfunctions {φi(x)} of the kernel k w.r.t. to µ(x), where

∫
φi(x)φj(x)dµ(x) =

δij , see section 4.3. Assuming that the kernel is nondegenerate so that the φs
form a complete orthonormal basis, we write f(x) =

∑∞
i=1 fiφi(x). Similarly,

η(x) =
∑∞

i=1 ηiφi(x), where ηi =
∫
η(x)φi(x)dµ(x). Thus

Jµ[f] =
n

2σ2
n

∞∑
i=1

(ηi − fi)2 +
1
2

∞∑
i=1

f2
i

λi
. (7.5)

This is readily minimized by differentiation w.r.t. each fi to obtain

fi =
λi

λi + σ2
n/n

ηi. (7.6)

Notice that the term σ2
n/n → 0 as n → ∞ so that in this limit we would

expect that f(x) will converge to η(x). There are two caveats: (1) we have
assumed that η(x) is sufficiently well-behaved so that it can be represented by
the generalized Fourier series

∑∞
i=1 ηiφi(x), and (2) we assumed that the kernel

is nondegenerate. If the kernel is degenerate (e.g. a polynomial kernel) then f
should converge to the best µ-weighted L2 approximation to η within the span
of the φ’s. In section 7.2.1 we will say more about rates of convergence of f to
η; clearly in general this will depend on the smoothness of η, the kernel k and
the measure µ(x, y).

From a Bayesian perspective what is happening is that the prior on f is
being overwhelmed by the data as n → ∞. Looking at eq. (7.6) we also see
that if σ2

n � nλi then fi is effectively zero. This means that we cannot find
out about the coefficients of eigenfunctions with small eigenvalues until we get
sufficient amounts of data. Ferrari Trecate et al. [1999] demonstrated this by

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

7.1 The Equivalent Kernel 153

showing that regression performance of a certain nondegenerate GP could be
approximated by taking the first m eigenfunctions, where m was chosen so that
λm ' σ2

n/n. Of course as more data is obtained then m has to be increased.

Using the fact that ηi =
∫
η(x′)φi(x′)dµ(x′) and defining σ2

eff , σ2
n/n we

obtain

f(x) =
∞∑

i=1

λiηi

λi + σ2
eff

φi(x) =
∫ [∞∑

i=1

λiφi(x)φi(x′)
λi + σ2

eff

]
η(x′) dµ(x′). (7.7)

The term in square brackets in eq. (7.7) is the equivalent kernel for the smooth-
ing problem; we denote it by hn(x,x′). Notice the similarity to the vector-valued equivalent kernel

weight function h(x) defined in section 2.6. The difference is that there the pre-
diction was obtained as a linear combination of a finite number of observations
yi with weights given by hi(x) while here we have a noisy function y(x) instead,
with f̄(x′) =

∫
hn(x,x′)y(x)dµ(x). Notice that in the limit n → ∞ (so that

σ2
eff → 0) the equivalent kernel tends towards the delta function.

The form of the equivalent kernel given in eq. (7.7) is not very useful in
practice as it requires knowledge of the eigenvalues/functions for the combina-
tion of k and µ. However, in the case of stationary kernels we can use Fourier
methods to compute the equivalent kernel. Consider the functional

Jρ[f] =
ρ

2σ2
n

∫
(y(x)− f(x))2 dx +

1
2
‖f‖2H, (7.8)

where ρ has dimensions of the number of observations per unit of x-space
(length/area/volume etc. as appropriate). Using a derivation similar to eq. (7.6)
we obtain

h̃(s) =
Sf (s)

Sf (s) + σ2
n/ρ

=
1

1 + S−1
f (s)σ2

n/ρ
, (7.9)

where Sf (s) is the power spectrum of the kernel k. The term σ2
n/ρ corresponds

to the power spectrum of a white noise process, as the delta function covari-
ance function of white noise corresponds to a constant in the Fourier domain.
This analysis is known as Wiener filtering; see, e.g. Papoulis [1991, sec. 14-1]. Wiener filtering

Equation (7.9) is the same as eq. (7.6) except that the discrete eigenspectrum
has been replaced by a continuous one.

As can be observed in Figure 2.6, the equivalent kernel essentially gives a
weighting to the observations locally around x. Thus identifying ρ with np(x)
we can obtain an approximation to the equivalent kernel for stationary kernels
when the width of the kernel is smaller than the length-scale of variations in
p(x). This form of analysis was used by Silverman [1984] for splines in one
dimension.

7.1.1 Some Specific Examples of Equivalent Kernels

We first consider the OU process in 1-d. This has k(r) = exp(−α|r|) (setting
α = 1/` relative to our previous notation and r = x− x′), and power spectrum

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

154 Theoretical Perspectives

S(s) = 2α/(4π2s2 + α2). Let vn , σ2
n/ρ. Using eq. (7.9) we obtain

h̃(s) =
2α

vn(4π2s2 + β2)
, (7.10)

where β2 = α2 + 2α/vn. This again has the form of Fourier transform of an
OU covariance function1 and can be inverted to obtain h(r) = α

vnβ e
−β|r|. In

particular notice that as n increases (and thus vn decreases) the inverse length-
scale β of h(r) increases; asymptotically β ∼ n1/2 for large n. This shows that
the width of equivalent kernel for the OU covariance function will scale as n−1/2

asymptotically. Similarly the width will scale as p(x)−1/2 asymptotically.

A similar analysis can be carried out for the AR(2) Gaussian process in 1-d
(see section B.2) which has a power spectrum ∝ (4π2s2 + α2)−2 (i.e. it is in
the Matérn class with ν = 3/2). In this case we can show (using the Fourier
relationships given by Papoulis [1991, p. 326]) that the width of the equivalent
kernel scales as n−1/4 asymptotically.

Analysis of the equivalent kernel has also been carried out for spline models.
Silverman [1984] gives the explicit form of the equivalent kernel in the case
of a one-dimensional cubic spline (corresponding to the regularizer ‖Pf‖2 =∫

(f
′′
)2dx). Thomas-Agnan [1996] gives a general expression for the equivalent

kernel for the spline regularizer ‖Pf‖2 =
∫

(f (m))2dx in one dimension and also
analyzes end-effects if the domain of interest is a bounded open interval. For
the regularizer ‖Pf‖2 =

∫
(∇2f)2dx in two dimensions, the equivalent kernel is

given in terms of the Kelvin function kei (Poggio et al. 1985, Stein 1991).

Silverman [1984] has also shown that for splines of order m in 1-d (corre-
sponding to a roughness penalty of

∫
(f (m))2 dx) the width of the equivalent

kernel will scale as n−1/2m asymptotically. In fact it can be shown that this is
true for splines in D > 1 dimensions too, see exercise 7.7.1.

Another interesting case to consider is the squared exponential kernel, where
S(s) = (2π`2)D/2 exp(−2π2`2|s|2). Thus

h̃SE(s) =
1

1 + b exp(2π2`2|s|2)
, (7.11)

where b = σ2
n/ρ(2π`

2)D/2. We are unaware of an exact result in this case, but
the following approximation due to Sollich and Williams [2005] is simple but
effective. For large ρ (i.e. large n) b will be small. Thus for small s = |s| we
have that h̃SE ' 1, but for large s it is approximately 0. The change takes
place around the point sc where b exp(2π2`2s2c) = 1, i.e. s2c = log(1/b)/2π2`2.
As exp(2π2`2s2) grows quickly with s, the transition of h̃SE between 1 and 0
can be expected to be rapid, and thus be well-approximated by a step function.
By using the standard result for the Fourier transform of the step function we
obtain

hSE(x) = 2scsinc(2πscx) (7.12)

1The fact that h̃(s) has the same form as Sf (s) is particular to the OU covariance function
and is not generally the case.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

7.2 Asymptotic Analysis 155

for D = 1, where sinc(z) = sin(z)/z. A similar calculation in D > 1 using
eq. (4.7) gives

hSE(r) =
(sc

r

)D/2

JD/2(2πscr). (7.13)

Notice that sc scales as (log(n))1/2 so that the width of the equivalent kernel
will decay very slowly as n increases. Notice that the plots in Figure 2.6 show
the sinc-type shape, although the sidelobes are not quite as large as would be
predicted by the sinc curve (because the transition is smoother than a step
function in Fourier space so there is less “ringing”).

7.2 Asymptotic Analysis ∗

In this section we consider two asymptotic properties of Gaussian processes,
consistency and equivalence/orthogonality.

7.2.1 Consistency

In section 7.1 we have analyzed the asymptotics of GP regression and have
seen how the minimizer of the functional eq. (7.4) converges to the regression
function as n → ∞. We now broaden the focus by considering loss functions
other than squared loss, and the case where we work directly with eq. (7.1)
rather than the smoothed version eq. (7.4).

The set up is as follows: Let L(·, ·) be a pointwise loss function. Consider
a procedure that takes training data D and this loss function, and returns a
function fD(x). For a measurable function f , the risk (expected loss) is defined
as

RL(f) =
∫
L(y, f(x)) dµ(x, y). (7.14)

Let f∗L denote the function that minimizes this risk. For squared loss f∗L(x) =
E[y|x]. For 0/1 loss with classification problems, we choose f∗L(x) to be the
class c at x such that p(Cc|x) > p(Cj |x) for all j 6= c (breaking ties arbitrarily).

Definition 7.1 We will say that a procedure that returns fD is consistent for consistency

a given measure µ(x, y) and loss function L if

RL(fD) → RL(f∗L) as n→∞, (7.15)

where convergence is assessed in a suitable manner, e.g. in probability. If fD(x)
is consistent for all Borel probability measures µ(x, y) then it is said to be uni-
versally consistent. �

A simple example of a consistent procedure is the kernel regression method.
As described in section 2.6 one obtains a prediction at test point x∗ by comput-
ing f̂(x∗) =

∑n
i=1 wiyi where wi = κi/

∑n
j=1κj (the Nadaraya-Watson estima-

tor). Let h be the width of the kernel κ and D be the dimension of the input

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

156 Theoretical Perspectives

space. It can be shown that under suitable regularity conditions if h → 0 and
nhD → ∞ as n → ∞ then the procedure is consistent; see e.g. [Györfi et al.,
2002, Theorem 5.1] for the regression case with squared loss and Devroye et al.
[1996, Theorem 10.1] for the classification case using 0/1 loss. An intuitive
understanding of this result can be obtained by noting that h→ 0 means that
only datapoints very close to x∗ will contribute to the prediction (eliminating
bias), while the condition nhD →∞ means that a large number of datapoints
will contribute to the prediction (eliminating noise/variance).

It will first be useful to consider why we might hope that GPR and GPC
should be universally consistent. As discussed in section 7.1, the key property
is that a non-degenerate kernel will have an infinite number of eigenfunctions
forming an orthonormal set. Thus from generalized Fourier analysis a linear
combination of eigenfunctions

∑∞
i=1 ciφi(x) should be able to represent a suf-

ficiently well-behaved target function f∗L. However, we have to estimate the
infinite number of coefficients {ci} from the noisy observations. This makes it
clear that we are playing a game involving infinities which needs to be played
with care, and there are some results [Diaconis and Freedman, 1986, Freedman,
1999, Grünwald and Langford, 2004] which show that in certain circumstances
Bayesian inference in infinite-dimensional objects can be inconsistent.

However, there are some positive recent results on the consistency of GPR
and GPC. Choudhuri et al. [2005] show that for the binary classification case
under certain assumptions GPC is consistent. The assumptions include smooth-
ness on the mean and covariance function of the GP, smoothness on E[y|x] and
an assumption that the domain is a bounded subset of RD. Their result holds
for the class of response functions which are c.d.f.s of a unimodal symmetric
density; this includes the probit and logistic functions.

For GPR, Choi and Schervish [2004] show that for a one-dimensional input
space of finite length under certain assumptions consistency holds. Here the
assumptions again include smoothness of the mean and covariance function of
the GP and smoothness of E[y|x]. An additional assumption is that the noise
has a normal or Laplacian distribution (with an unknown variance which is
inferred).

There are also some consistency results relating to the functional

Jλn
[f] =

λn

2
‖f‖2H +

1
n

n∑
i=1

L
(
yi, f(xi)

)
, (7.16)

where λn → 0 as n → ∞. Note that to agree with our previous formulations
we would set λn = 1/n, but other decay rates on λn are often considered.

In the splines literature, Cox [1984] showed that for regression problems us-
ing the regularizer ‖f‖2m =

∑m
k=0 ‖Okf‖2 (using the definitions in eq. (6.10))

consistency can be obtained under certain technical conditions. Cox and O’Sulli-
van [1990] considered a wide range of problems (including regression problems
with squared loss and classification using logistic loss) where the solution is
obtained by minimizing the regularized risk using a spline smoothness term.
They showed that if f∗L ∈ H (where H is the RKHS corresponding to the spline

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

7.2 Asymptotic Analysis 157

regularizer) then as n → ∞ and λn → 0 at an appropriate rate, one gets
convergence of fD to f∗L.

More recently, Zhang [2004, Theorem 4.4] has shown that for the classifica-
tion problem with a number of different loss functions (including logistic loss,
hinge loss and quadratic loss) and for general RKHSs with a nondegenerate
kernel, that if λn → 0, λnn → ∞ and µ(x, y) is sufficiently regular then the
classification error of fD will converge to the Bayes optimal error in probability
as n → ∞. Similar results have also been obtained by Steinwart [2005] with
various rates on the decay of λn depending on the smoothness of the kernel.
Bartlett et al. [2003] have characterized the loss functions that lead to universal
consistency.

Above we have focussed on regression and classification problems. However,
similar analyses can also be given for other problems such as density estimation
and deconvolution; see Wahba [1990, chs. 8, 9] for references. Also we have
discussed consistency using a fixed decay rate for λn. However, it is also possible
to analyze the asymptotics of methods where λn is set in a data-dependent way,
e.g. by cross-validation;2 see Wahba [1990, sec. 4.5] and references therein for
further details.

Consistency is evidently a desirable property of supervised learning proce-
dures. However, it is an asymptotic property that does not say very much about
how a given prediction procedure will perform on a particular problem with a
given dataset. For instance, note that we only required rather general prop-
erties of the kernel function (e.g. non-degeneracy) for some of the consistency
results. However, the choice of the kernel can make a huge difference to how a
procedure performs in practice. Some analyses related to this issue are given in
section 7.3.

7.2.2 Equivalence and Orthogonality

The presentation in this section is based mainly on Stein [1999, ch. 4]. For
two probability measures µ0 and µ1 defined on a measurable space (Ω,F),3

µ0 is said to be absolutely continuous w.r.t. µ1 if for all A ∈ F , µ1(A) = 0
implies µ0(A) = 0. If µ0 is absolutely continuous w.r.t. µ1 and µ1 is absolutely
continuous w.r.t. µ0 the two measures are said to be equivalent, written µ0 ≡ µ1.
µ0 and µ1 are said to be orthogonal, written µ0 ⊥ µ1, if there exists an A ∈ F
such that µ0(A) = 1 and µ1(A) = 0. (Note that in this case we have µ0(Ac) = 0
and µ1(Ac) = 1, where Ac is the complement of A.) The dichotomy theorem for
Gaussian processes (due to Hajek [1958] and, independently, Feldman [1958])
states that two Gaussian processes are either equivalent or orthogonal.

Equivalence and orthogonality for Gaussian measures µ0, µ1 with corre-
sponding probability densities p0, p1, can be characterized in terms of the

2Cross validation is discussed in section 5.3.
3See section A.7 for background on measurable spaces.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

158 Theoretical Perspectives

symmetrized Kullback-Leibler divergence KLsym between them, given by

KLsym(p0, p1) =
∫

(p0(f)− p1(f)) log
p0(f)
p1(f)

df . (7.17)

The measures are equivalent if KLsym <∞ and orthogonal otherwise. For two
finite-dimensional Gaussian distributions N (µ0,K0) and N (µ1,K1) we have
[Kullback, 1959, sec. 9.1]

KLsym = 1
2 tr(K0 −K1)(K−1

1 −K−1
0)

+ 1
2 tr(K−1

1 +K−1
0)(µ0 − µ1)(µ0 − µ1)

>.
(7.18)

This expression can be simplified considerably by simultaneously diagonalizing
K0 and K1. Two finite-dimensional Gaussian distributions are equivalent if the
null spaces of their covariance matrices coincide, and are orthogonal otherwise.

Things can get more interesting if we consider infinite-dimensional distribu-
tions, i.e. Gaussian processes. Consider some closed subset R ∈ RD. Choose
some finite number n of x-points in R and let f = (f1, . . . , fn)> denote the
values corresponding to these inputs. We consider the KLsym-divergence as
above, but in the limit n→∞. KLsym can now diverge if the rates of decay of
the eigenvalues of the two processes are not the same. For example, consider
zero-mean periodic processes with period 1 where the eigenvalue λi

j indicates
the amount of power in the sin/cos terms of frequency 2πj for process i = 0, 1.
Then using eq. (7.18) we have

KLsym =
(λ0

0 − λ1
0)

2

λ0
0λ

1
0

+ 2
∞∑

j=1

(λ0
j − λ1

j)
2

λ0
jλ

1
j

(7.19)

(see also [Stein, 1999, p. 119]). Some corresponding results for the equiva-
lence or orthogonality of non-periodic Gaussian processes are given in Stein
[1999, pp. 119-122]. Stein (p. 109) gives an example of two equivalent Gaussian
processes on R, those with covariance functions exp(−r) and 1/2 exp(−2r). (It
is easy to check that for large s these have the same power spectrum.)

We now turn to the consequences of equivalence for the model selection
problem. Suppose that we know that either GP0 or GP1 is the correct model.
Then if GP0 ≡ GP1 then it is not possible to determine which model is correct
with probability 1. However, under a Bayesian setting all this means is if we
have prior probabilities π0 and π1 = 1−π0 on these two hypotheses, then after
observing some data D the posterior probabilities p(GPi|D) (for i = 0, 1) will
not be 0 or 1, but could be heavily skewed to one model or the other.

The other important observation is to consider the predictions made by GP0

or GP1. Consider the case where GP0 is the correct model and GP1 ≡ GP0.
Then Stein [1999, sec. 4.3] shows that the predictions of GP1 are asymptotically
optimal, in the sense that the expected relative prediction error between GP1

and GP0 tends to 0 as n→∞ under some technical conditions. Stein’s Corol-
lary 9 (p. 132) shows that this conclusion remains true under additive noise if
the un-noisy GPs are equivalent. One caveat about equivalence is although the
predictions of GP1 are asymptotically optimal when GP0 is the correct model
and GP0 ≡ GP1, one would see differing predictions for finite n.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

7.3 Average-case Learning Curves 159

7.3 Average-case Learning Curves ∗

In section 7.2 we have discussed the asymptotic properties of Gaussian process
predictors and related methods. In this section we will say more about the
speed of convergence under certain specific assumptions. Our goal will be to
obtain a learning curve describing the generalization error as a function of the
training set size n. This is an average-case analysis, averaging over the choice
of target functions (drawn from a GP) and over the x locations of the training
points.

In more detail, we first consider a target function f drawn from a Gaussian
process. n locations are chosen to make observations at, giving rise to the train-
ing set D = (X,y). The yis are (possibly) noisy observations of the underlying
function f . Given a loss function L(·, ·) which measures the difference between
the prediction for f and f itself, we obtain an estimator fD for f . Below we
will use the squared loss, so that the posterior mean f̄D(x) is the estimator.
Then the generalization error (given f and D) is given by generalization error

Eg
D(f) =

∫
L(f(x∗), f̄D(x∗))p(x∗) dx∗. (7.20)

As this is an expected loss it is technically a risk, but the term generalization
error is commonly used.

Eg
D(f) depends on both the choice of f and on X. (Note that y depends on

the choice of f , and also on the noise, if present.) The first level of averaging
we consider is over functions f drawn from a GP prior, to obtain

Eg(X) =
∫
Eg
D(f)p(f) df. (7.21)

It will turn out that for regression problems with Gaussian process priors and
predictors this average can be readily calculated. The second level of averaging
assumes that the x-locations of the training set are drawn i.i.d. from p(x) to
give

Eg(n) =
∫
Eg(X)p(x1) . . . p(xn) dx1 . . . dxn. (7.22)

A plot of Eg(n) against n is known as a learning curve. learning curve

Rather than averaging over X, an alternative is to minimize Eg(X) w.r.t. X.
This gives rise to the optimal experimental design problem. We will not say
more about this problem here, but it has been subject to a large amount of
investigation. An early paper on this subject is by Ylvisaker [1975]. These
questions have been addressed both in the statistical literature and in theoretical
numerical analysis; for the latter area the book by Ritter [2000] provides a useful
overview.

We now proceed to develop the average-case analysis further for the specific
case of GP predictors and GP priors for the regression case using squared loss.
Let f be drawn from a zero-mean GP with covariance function k0 and noise
level σ2

0 . Similarly the predictor assumes a zero-mean process, but covariance

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

160 Theoretical Perspectives

function k1 and noise level σ2
1 . At a particular test location x∗, averaging over

f we have

E[(f(x∗)− k1(x∗)>K−1
1,yy)2] (7.23)

= E[f2(x∗)]− 2k1(x∗)>K−1
1,yE[f(x∗)y] + k1(x∗)>K−1

1,yE[yy>]K−1
1,yk1(x∗)

= k0(x∗,x∗)− 2k1(x∗)>K−1
1,yk0(x∗) + k1(x∗)>K−1

1,yK0,yK
−1
1,yk1(x∗)

where Ki,y = Ki,f + σ2
i for i = 0, 1, i.e. the covariance matrix including the

assumed noise. If k1 = k0 so that the predictor is correctly specified then
the above expression reduces to k0(x∗,x∗)−k0(x∗)>K−1

0,yk0(x∗), the predictive
variance of the GP.

Averaging the error over p(x∗) we obtain

Eg(X) =
∫

E[(f(x∗)− k1(x∗)>K−1
1,yy)2]p(x∗) dx∗ (7.24)

=
∫
k0(x∗,x∗)p(x∗) dx∗ − 2 tr

(
K−1

1,y

∫
k0(x∗)k1(x∗)>p(x∗) dx∗

)
+ tr

(
K−1

1,yK0,yK
−1
1,y

∫
k1(x∗)k1(x)>p(x∗) dx∗

)
.

For some choices of p(x∗) and covariance functions these integrals will be an-
alytically tractable, reducing the computation of Eg(X) to a n × n matrix
computation.

To obtain Eg(n) we need to perform a final level of averaging over X. In
general this is difficult even if Eg(X) can be computed exactly, but it is some-
times possible, e.g. for the noise-free OU process on the real line, see section
7.6.

The form of Eg(X) can be simplified considerably if we express the covari-
ance functions in terms of their eigenfunction expansions. In the case that k0 =
k1 we use the definition k(x,x′) =

∑
i λiφi(x)φi(x′) and

∫
k(x,x′)φi(x)p(x) dx =

λiφi(x′). Let Λ be a diagonal matrix of the eigenvalues and Φ be the N × n
design matrix, as defined in section 2.1.2. Then from eq. (7.24) we obtain

Eg(X) = tr(Λ)− tr((σ2
nI + Φ>ΛΦ)−1Φ>Λ2Φ)

= tr(Λ−1 + σ−2
n ΦΦ>)−1,

(7.25)

where the second line follows through the use of the matrix inversion lemma
eq. (A.9) (or directly if we use eq. (2.11)), as shown in Sollich [1999] or Opper
and Vivarelli [1999]. Using the fact that EX [ΦΦ>] = nI, a näıve approximation
would replace ΦΦ> inside the trace with its expectation; in fact Opper and
Vivarelli [1999] showed that this gives a lower bound, so that

Eg(n) ≥ tr(Λ−1 + nσ−2
n I)−1 = σ2

N∑
i=1

λi

σ2
n + nλi

. (7.26)

Examining the asymptotics of eq. (7.26), we see that for each eigenvalue where
λi � σ2

n/n we add σ2
n/n onto the bound on the generalization error. As we saw

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

7.4 PAC-Bayesian Analysis 161

in section 7.1, more eigenfunctions “come into play” as n increases, so the rate
of decay of Eg(n) is slower than 1/n. Sollich [1999] derives a number of more
accurate approximations to the learning curve than eq. (7.26).

For the noiseless case with k1 = k0, there is a simple lower bound Eg(n) ≥∑∞
i=n+1 λi due to Micchelli and Wahba [1981]. This bound is obtained by

demonstrating that the optimal n pieces of information are the projections of the
random function f onto the first n eigenfunctions. As observations which simply
consist of function evaluations will not in general provide such information this
is a lower bound. Plaskota [1996] generalized this result to give a bound on the
learning curve if the observations are noisy.

Some asymptotic results for the learning curves are known. For example, in
Ritter [2000, sec. V.2] covariance functions obeying Sacks-Ylvisaker conditions4

of order r in 1-d are considered. He shows that for an optimal sampling of the
input space the generalization error goes as O(n−(2r+1)/(2r+2)) for the noisy
problem. Similar rates can also be found in Sollich [2002] for random designs.
For the noise-free case Ritter [2000, p. 103] gives the rate as O(n−(2r+1)).

One can examine the learning curve not only asymptotically but also for
small n, where typically the curve has a roughly linear decrease with n. Williams
and Vivarelli [2000] explained this behaviour by observing that the introduction
of a datapoint x1 reduces the variance locally around x1 (assuming a stationary
covariance function). The addition of another datapoint at x2 will also create
a “hole” there, and so on. With only a small number of datapoints it is likely
that these holes will be far apart so their contributions will add, thus explaining
the initial linear trend.

Sollich [2002] has also investigated the mismatched case where k0 6= k1.
This can give rise to a rich variety of behaviours in the learning curves, includ-
ing plateaux. Stein [1999, chs. 3, 4] has also carried out some analysis of the
mismatched case.

Although we have focused on GP regression with squared loss, we note that
Malzahn and Opper [2002] have developed more general techniques that can be
used to analyze learning curves for other situations such as GP classification.

7.4 PAC-Bayesian Analysis ∗

In section 7.3 we gave an average-case analysis of generalization, taking the
average with respect to a GP prior over functions. In this section we present
a different kind of analysis within the probably approximately correct (PAC) PAC

framework due to Valiant [1984]. Seeger [2002; 2003] has presented a PAC-
Bayesian analysis of generalization in Gaussian process classifiers and we get
to this in a number of stages; we first present an introduction to the PAC
framework (section 7.4.1), then describe the PAC-Bayesian approach (section

4Roughly speaking, a stochastic process which possesses r MS derivatives but not r + 1
is said to satisfy Sacks-Ylvisaker conditions of order r; in 1-d this gives rise to a spectrum
λi ∝ i−(2r+2) asymptotically. The OU process obeys Sacks-Ylvisaker conditions of order 0.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

162 Theoretical Perspectives

7.4.2) and then finally the application to GP classification (section 7.4.3). Our
presentation is based mainly on Seeger [2003].

7.4.1 The PAC Framework

Consider a fixed measure µ(x, y). Given a loss function L there exists a function
η(x) which minimizes the expected risk. By running a learning algorithm on
a data set D of size n drawn i.i.d. from µ(x, y) we obtain an estimate fD of η
which attains an expected risk RL(fD). We are not able to evaluate RL(fD) as
we do not know µ. However, we do have access to the empirical distribution of
the training set µ̂(x, y) = 1

n

∑
i δ(x−xi)δ(y−yi) and can compute the empirical

risk R̂L(fD) = 1
n

∑
i L(yi, fD(xi)). Because the training set had been used to

compute fD we would expect R̂L(fD) to underestimate RL(fD),5 and the aim
of the PAC analysis is to provide a bound on RL(fD) based on R̂L(fD).

A PAC bound has the following format

pD{RL(fD) ≤ R̂L(fD) + gap(fD,D, δ)} ≥ 1− δ, (7.27)

where pD denotes the probability distribution of datasets drawn i.i.d. from
µ(x, y), and δ ∈ (0, 1) is called the confidence parameter. The bound states
that, averaged over draws of the dataset D from µ(x, y), RL(fD) does not
exceed the sum of R̂L(fD) and the gap term with probability of at least 1− δ.
The δ accounts for the “probably” in PAC, and the “approximately” derives
from the fact that the gap term is positive for all n. It is important to note that
PAC analyses are distribution-free, i.e. eq. (7.27) must hold for any measure µ.

There are two kinds of PAC bounds, depending on whether gap(fD,D, δ)
actually depends on the particular sample D (rather than on simple statistics
like n). Bounds that do depend on D are called data dependent, and those that
do not are called data independent. The PAC-Bayesian bounds given below are
data dependent.

It is important to understand the interpretation of a PAC bound and to
clarify this we first consider a simpler case of statistical inference. We are
given a dataset D = {x1, . . . ,xn} drawn i.i.d. from a distribution µ(x) that
has mean m. An estimate of m is given by the sample mean x̄ =

∑
i xi/n.

Under certain assumptions we can obtain (or put bounds on) the sampling
distribution p(x̄|m) which relates to the choice of dataset D. However, if we
wish to perform probabilistic inference for m we need to combine p(x̄|m) with
a prior distribution p(m) and use Bayes’ theorem to obtain the posterior.6

The situation is similar (although somewhat more complex) for PAC bounds as
these concern the sampling distribution of the expected and empirical risks of
fD w.r.t. D.

5It is also possible to consider PAC analyses of other empirical quantities such as the
cross-validation error (see section 5.3) which do not have this bias.

6In introductory treatments of frequentist statistics the logical hiatus of going from the
sampling distribution to inference on the parameter of interest is often not well explained.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

7.4 PAC-Bayesian Analysis 163

We might wish to make a conditional statement like

pD{RL(fD) ≤ r + gap(fD,D, δ)|R̂L(fD) = r} ≥ 1− δ, (7.28)

where r is a small value, but such a statement cannot be inferred directly from
the PAC bound. This is because the gap might be heavily anti-correlated with
R̂L(fD) so that the gap is large when the empirical risk is small.

PAC bounds are sometimes used to carry out model selection—given a learn-
ing machine which depends on a (discrete or continuous) parameter vector θ,
one can seek to minimize the generalization bound as a function of θ. However,
this procedure may not be well-justified if the generalization bounds are loose.
Let the slack denote the difference between the value of the bound and the
generalization error. The danger of choosing θ to minimize the bound is that
if the slack depends on θ then the value of θ that minimizes the bound may be
very different from the value of θ that minimizes the generalization error. See
Seeger [2003, sec. 2.2.4] for further discussion.

7.4.2 PAC-Bayesian Analysis

We now consider a Bayesian set up, with a prior distribution p(w) over the pa-
rameters w, and a “posterior” distribution q(w). (Strictly speaking the analysis
does not require q(w) to be the posterior distribution, just some other distribu-
tion, but in practice we will consider q to be an (approximate) posterior distri-
bution.) We also limit our discussion to binary classification with labels {−1, 1},
although more general cases can be considered, see Seeger [2003, sec. 3.2.2].

The predictive distribution for f∗ at a test point x∗ given q(w) is q(f∗|x∗) =∫
q(f∗|w,x∗)q(w)dw, and the predictive classifier outputs sgn(q(f∗|x∗)− 1/2). predictive classifier

The Gibbs classifier has also been studied in learning theory; given a test point Gibbs classifier
x∗ one draws a sample w̃ from q(w) and predicts the label using sgn(f(x∗; w̃)).
The main reason for introducing the Gibbs classifier here is that the PAC-
Bayesian theorems given below apply to Gibbs classifiers.

For a given parameter vector w giving rise to a classifier c(x;w), the ex-
pected risk and empirical risk are given by

RL(w) =
∫
L(y, c(x;w)) dµ(x, y), R̂L(w) =

1
n

n∑
i=1

L(yi, c(xi;w)). (7.29)

As the Gibbs classifier draws samples from q(w) we consider the averaged risks

RL(q) =
∫
RL(w)q(w) dw, R̂L(q) =

∫
R̂L(w)q(w) dw. (7.30)

Theorem 7.1 (McAllester’s PAC-Bayesian theorem) For any probability mea- McAllester’s
PAC-Bayesian theoremsures p and q over w and for any bounded loss function L for which L(y, c(x)) ∈

[0, 1] for any classifier c and input x we have

pD

{
RL(q) ≤ R̂L(q) +

√
KL(q||p) + log 1

δ + log n+ 2
2n− 1

∀ q
}
≥ 1− δ. (7.31)

�

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

164 Theoretical Perspectives

The proof can be found in McAllester [2003]. The Kullback-Leibler (KL) diver-
gence KL(q||p) is defined in section A.5. An example of a loss function which
obeys the conditions of the theorem is the 0/1 loss.

For the special case of 0/1 loss, Seeger [2002] gives the following tighter
bound.

Theorem 7.2 (Seeger’s PAC-Bayesian theorem) For any distribution over X×Seeger’s PAC-
Bayesian theorem {−1,+1} and for any probability measures p and q over w the following bound

holds for i.i.d. samples drawn from the data distribution

pD

{
KLBer(R̂L(q)||RL(q)) ≤ 1

n
(KL(q||p) + log

n+ 1
δ

) ∀ q
}
≥ 1− δ. (7.32)

�
Here KLBer(·||·) is the KL divergence between two Bernoulli distributions (de-
fined in eq. (A.22)). Thus the theorem bounds (with high probability) the KL
divergence between R̂L(q) and RL(q).

The PAC-Bayesian theorems above refer to a Gibbs classifier. If we are
interested in the predictive classifier sgn(q(f∗|x∗) − 1/2) then Seeger [2002]
shows that if q(f∗|x∗) is symmetric about its mean then the expected risk
of the predictive classifier is less than twice the expected risk of the Gibbs
classifier. However, this result is based on a simple bounding argument and in
practice one would expect that the predictive classifier will usually give better
performance than the Gibbs classifier. Recent work by Meir and Zhang [2003]
provides some PAC bounds directly for Bayesian algorithms (like the predictive
classifier) whose predictions are made on the basis of a data-dependent posterior
distribution.

7.4.3 PAC-Bayesian Analysis of GP Classification

To apply this bound to the Gaussian process case we need to compute the
KL divergence KL(q||p) between the posterior distribution q(w) and the prior
distribution p(w). Although this could be considered w.r.t. the weight vector
w in the eigenfunction expansion, in fact it turns out to be more convenient
to consider the latent function value f(x) at every possible point in the input
space X as the parameter. We divide this (possibly infinite) vector into two
parts, (1) the values corresponding to the training points x1, . . . ,xn, denoted
f , and (2) those at the remaining points in x-space (the test points) f∗.

The key observation is that all methods we have described for dealing with
GP classification problems produce a posterior approximation q(f |y) which is
defined at the training points. (This is an approximation for Laplace’s method
and for EP; MCMC methods sample from the exact posterior.) This posterior
over f is then extended to the test points by setting q(f , f∗|y) = q(f |y)p(f∗|f).
Of course for the prior distribution we have a similar decomposition p(f , f∗) =

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

7.5 Comparison with Other Supervised Learning Methods 165

p(f)p(f∗|f). Thus the KL divergence is given by

KL(q||p) =
∫
q(f |y)p(f∗|f) log

q(f |y)p(f∗|f)
p(f)p(f∗|f)

dfdf∗

=
∫
q(f |y) log

q(f |y)
p(f)

df ,
(7.33)

as shown e.g. in Seeger [2002]. Notice that this has reduced a rather scary
infinite-dimensional integration to a more manageable n-dimensional integra-
tion; in the case that q(f |y) is Gaussian (as for the Laplace and EP approxima-
tions), this KL divergence can be computed using eq. (A.23). For the Laplace
approximation with p(f) = N (0,K) and q(f |y) = N (f̂ , A−1) this gives

KL(q||p) = 1
2 log |K|+ 1

2 log |A|+ 1
2 tr

(
A−1(K−1 −A)

)
+ 1

2 f̂
>K−1f̂ . (7.34)

Seeger [2002] has evaluated the quality of the bound produced by the PAC-
Bayesian method for a Laplace GPC on the task of discriminating handwritten
2s and 3s from the MNIST handwritten digits database.7 He reserved a test set
of 1000 examples and used training sets of size 500, 1000, 2000, 5000 and 9000.
The classifications were replicated ten times using draws of the training sets
from a pool of 12089 examples. We quote example results for n = 5000 where
the training error was 0.0187 ± 0.0016, the test error was 0.0195 ± 0.0011 and
the PAC-Bayesian bound on the generalization error (evaluated for δ = 0.01)
was 0.076 ± 0.002. (The ± figures denote a 95% confidence interval.) The
classification results are for the Gibbs classifier; for the predictive classifier the
test error rate was 0.0171±0.0016. Thus the generalization error is around 2%,
while the PAC bound is 7.6%. Many PAC bounds struggle to predict error rates
below 100%(!), so this is an impressive and highly non-trivial result. Further
details and experiments can be found in Seeger [2002].

7.5 Comparison with Other Supervised Learn-
ing Methods

The focus of this book is on Gaussian process methods for supervised learning.
However, there are many other techniques available for supervised learning such
as linear regression, logistic regression, decision trees, neural networks, support
vector machines, kernel smoothers, k-nearest neighbour classifiers, etc., and we
need to consider the relative strengths and weaknesses of these approaches.

Supervised learning is an inductive process—given a finite training set we
wish to infer a function f that makes predictions for all possible input values.
The additional assumptions made by the learning algorithm are known as its
inductive bias (see e.g. Mitchell [1997, p. 43]). Sometimes these assumptions inductive bias

are explicit, but for other algorithms (e.g. for decision tree induction) they can
be rather more implicit.

7See http://yann.lecun.com/exdb/mnist.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

166 Theoretical Perspectives

However, for all their variety, supervised learning algorithms are based on
the idea that similar input patterns will usually give rise to similar outputs (or
output distributions), and it is the precise notion of similarity that differentiates
the algorithms. For example some algorithms may do feature selection and
decide that there are input dimensions that are irrelevant to the predictive task.
Some algorithms may construct new features out of those provided and measure
similarity in this derived space. As we have seen, many regression techniques
can be seen as linear smoothers (see section 2.6) and these techniques vary in
the definition of the weight function that is used.

One important distinction between different learning algorithms is how they
relate to the question of universal consistency (see section 7.2.1). For example
a linear regression model will be inconsistent if the function that minimizes the
risk cannot be represented by a linear function of the inputs. In general a model
with a finite-dimensional parameter vector will not be universally consistent.
Examples of such models are linear regression and logistic regression with a
finite-dimensional feature vector, and neural networks with a fixed number of
hidden units. In contrast to these parametric models we have non-parametric
models (such as k-nearest neighbour classifiers, kernel smoothers and Gaussian
processes and SVMs with nondegenerate kernels) which do not compress the
training data into a finite-dimensional parameter vector. An intermediate po-
sition is taken by semi-parametric models such as neural networks where the
number of hidden units k is allowed to increase as n increases. In this case uni-
versal consistency results can be obtained [Devroye et al., 1996, ch. 30] under
certain technical conditions and growth rates on k.

Although universal consistency is a “good thing”, it does not necessarily
mean that we should only consider procedures that have this property; for
example if on a specific problem we knew that a linear regression model was
consistent for that problem then it would be very natural to use it.

In the 1980’s there was a large surge in interest in artificial neural networksneural networks

(ANNs), which are feedforward networks consisting of an input layer, followed
by one or more layers of non-linear transformations of weighted combinations of
the activity from previous layers, and an output layer. One reason for this surge
of interest was the use of the backpropagation algorithm for training ANNs.
Initial excitement centered around that fact that training non-linear networks
was possible, but later the focus came onto the generalization performance of
ANNs, and how to deal with questions such as how many layers of hidden
units to use, how many units there should be in each layer, and what type of
non-linearities should be used, etc.

For a particular ANN the search for a good set of weights for a given training
set is complicated by the fact that there can be local optima in the optimization
problem; this can cause significant difficulties in practice. In contrast for Gaus-
sian process regression and classification the posterior for the latent variables
is convex.

One approach to the problems raised above was to put ANNs in a BayesianBayesian neural
networks framework, as developed by MacKay [1992a] and Neal [1996]. This gives rise

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

7.5 Comparison with Other Supervised Learning Methods 167

to posterior distributions over weights for a given architecture, and the use of
the marginal likelihood (see section 5.2) for model comparison and selection.
In contrast to Gaussian process regression the marginal likelihood for a given
ANN model is not analytically tractable, and thus approximation techniques
such as the Laplace approximation [MacKay, 1992a] and Markov chain Monte
Carlo methods [Neal, 1996] have to be used. Neal’s observation [1996] that
certain ANNs with one hidden layer converge to a Gaussian process prior over
functions (see section 4.2.3) led us to consider GPs as alternatives to ANNs.

MacKay [2003, sec. 45.7] raises an interesting question whether in moving
from neural networks to Gaussian processes we have “thrown the baby out with
the bathwater?”. This question arises from his statements that “neural networks
were meant to be intelligent models that discovered features and patterns in
data”, while “Gaussian processes are simply smoothing devices”. Our answer
to this question is that GPs give us a computationally attractive method for
dealing with the smoothing problem for a given kernel, and that issues of feature
discovery etc. can be addressed through methods to select the kernel function
(see chapter 5 for more details on how to do this). Note that using a distance
function r2(x,x′) = (x− x′)>M(x− x′) with M having a low-rank form M =
ΛΛ>+Ψ as in eq. (4.22), features are described by the columns of Λ. However,
some of the non-convexity of the neural network optimization problem now
returns, as optimizing the marginal likelihood in terms of the parameters of M
may well have local optima.

As we have seen from chapters 2 and 3 linear regression and logistic regres- linear and logistic
regressionsion with Gaussian priors on the parameters are a natural starting point for

the development of Gaussian process regression and Gaussian process classifi-
cation. However, we need to enhance the flexibility of these models, and the
use of non-degenerate kernels opens up the possibility of universal consistency.

Kernel smoothers and classifiers have been described in sections 2.6 and kernel smoothers and
classifiers7.2.1. At a high level there are similarities between GP prediction and these

methods as a kernel is placed on every training example and the prediction is
obtained through a weighted sum of the kernel functions, but the details of
the prediction and the underlying logic differ. Note that the GP prediction
view gives us much more, e.g. error bars on the predictions and the use of the
marginal likelihood to set parameters in the kernel (see section 5.2). On the
other hand the computational problem that needs to be solved to carry out GP
prediction is more demanding than that for simple kernel-based methods.

Kernel smoothers and classifiers are non-parametric methods, and consis-
tency can often be obtained under conditions where the width h of the kernel
tends to zero while nhD →∞. The equivalent kernel analysis of GP regression
(section 7.1) shows that there are quite close connections between the kernel
regression method and GPR, but note that the equivalent kernel automatically
reduces its width as n grows; in contrast the decay of h has to be imposed for
kernel regression. Also, for some kernel smoothing and classification algorithms
the width of the kernel is increased in areas of low observation density; for ex-
ample this would occur in algorithms that consider the k nearest neighbours of
a test point. Again notice from the equivalent kernel analysis that the width

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

168 Theoretical Perspectives

of the equivalent kernel is larger in regions of low density, although the exact
dependence on the density will depend on the kernel used.

The similarities and differences between GP prediction and regularizationregularization networks,
splines, SVMs and
RVMs

networks, splines, SVMs and RVMs have been discussed in chapter 6.

7.6 Appendix: Learning Curve for the Ornstein-∗
Uhlenbeck Process

We now consider the calculation of the learning curve for the OU covariance
function k(r) = exp(−α|r|) on the interval [0, 1], assuming that the training x’s
are drawn from the uniform distribution U(0, 1). Our treatment is based on
Williams and Vivarelli [2000].8 We first calculate Eg(X) for a fixed design, and
then integrate over possible designs to obtain Eg(n).

In the absence of noise the OU process is Markovian (as discussed in Ap-
pendix B and exercise 4.5.1). We consider the interval [0, 1] with points x1 <
x2 . . . < xn−1 < xn placed on this interval. Also let x0 = 0 and xn+1 = 1. Due
to the Markovian nature of the process the prediction at a test point x depends
only on the function values of the training points immediately to the left and
right of x. Thus in the i-th interval (counting from 0) the bounding points are
xi and xi+1. Let this interval have length δi.

Using eq. (7.24) we have

Eg(X) =
∫ 1

0

σ2
f (x) dx =

n∑
i=0

∫ xi+1

xi

σ2
f (x) dx, (7.35)

where σ2
f (x) is the predictive variance at input x. Using the Markovian property

we have in interval i (for i = 1, . . . , n− 1) that σ2
f (x) = k(0)− k(x)>K−1k(x)

where K is the 2× 2 Gram matrix

K =
(

k(0) k(δi)
k(δi) k(0)

)
(7.36)

and k(x) is the corresponding vector of length 2. Thus

K−1 =
1

∆i

(
k(0) −k(δi)
−k(δi) k(0)

)
, (7.37)

where ∆i = k2(0)− k2(δi) and

σ2
f (x) = k(0)− 1

∆i
[k(0)(k2(xi+1−x)+k2(x−xi))−2k(δi)k(x−xi)k(xi+1−x)].

(7.38)
Thus ∫ xi+1

xi

σ2
f (x)dx = δik(0)− 2

∆i
(I1(δi)− I2(δi)) (7.39)

8CW thanks Manfred Opper for pointing out that the upper bound developed in Williams
and Vivarelli [2000] is exact for the noise-free OU process.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

7.7 Exercises 169

where

I1(δ) = k(0)
∫ δ

0

k2(z)dz, I2(δ) = k(δ)
∫ δ

0

k(z)k(δ − z)dz. (7.40)

For k(r) = exp(−α|r|) these equations reduce to I1(δ) = (1− e−2αδ)/(2α),
I2(δ) = δe−2αδ and ∆ = 1− e−2αδ. Thus∫ xi+1

xi

σ2
f (x)dx = δi −

1
α

+
2δie−2αδi

1− e−2αδi
. (7.41)

This calculation is not correct in the first and last intervals where only x1

and xn are relevant (respectively). For the 0th interval we have that σ2
f (x) =

k(0)− k2(x1 − x)/k(0) and thus∫ x1

0

σ2
f (x) = δ0k(0)− 1

k(0)

∫ x1

0

k2(x1 − x)dx (7.42)

= δ0 −
1
2α

(1− e−2αδ0), (7.43)

and a similar result holds for
∫ 1

xn
σ2

f (x).

Putting this all together we obtain

Eg(X) = 1− n

α
+

1
2α

(e−2αδ0 + e−2αδn) +
n−1∑
i=1

2δie−2αδi

1− e−2αδi
. (7.44)

Choosing a regular grid so that δ0 = δn = 1/2n and δi = 1/n for i =
1, . . . , n − 1 it is straightforward to show (see exercise 7.7.4) that Eg scales as
O(n−1), in agreement with the general Sacks-Ylvisaker result [Ritter, 2000, p.
103] when it is recalled that the OU process obeys Sacks-Ylvisaker conditions
of order 0. A similar calculation is given in Plaskota [1996, sec. 3.8.2] for the
Wiener process on [0, 1] (note that this is also Markovian, but non-stationary).

We have now worked out the generalization error for a fixed design X.
However to compute Eg(n) we need to average Eg(X) over draws of X from the
uniform distribution. The theory of order statistics David [1970, eq. 2.3.4] tells
us that p(δ) = n(1−δ)n−1 for all the δi, i = 0, . . . , n. Taking the expectation of
Eg(X) then turns into the problem of evaluating the one-dimensional integrals∫
e−2αδp(δ)dδ and

∫
δe−2αδ(1 − e−2αδ)−1p(δ)dδ. Exercise 7.7.5 asks you to

compute these integrals numerically.

7.7 Exercises

1. Consider a spline regularizer with Sf (s) = c−1|s|−2m. (As we noted in
section 6.3 this is not strictly a power spectrum as the spline is an im-
proper prior, but it can be used as a power spectrum in eq. (7.9) for the

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

170 Theoretical Perspectives

purposes of this analysis.) The equivalent kernel corresponding to this
spline is given by

h(x) =
∫

exp(2πis · x)
1 + γ|s|2m

ds, (7.45)

where γ = cσ2
n/ρ. By changing variables in the integration to |t| =

γ1/2m|s| show that the width of h(x) scales as n−1/2m.

2. Equation 7.45 gives the form of the equivalent kernel for a spline regular-
izer. Show that h(0) is only finite if 2m > D. (Hint: transform the inte-
gration to polar coordinates.) This observation was made by P. Whittle
in the discussion of Silverman [1985], and shows the need for the condition
2m > D for spline smoothing.

3. Computer exercise: Space n + 1 points out evenly along the interval
(−1/2, 1/2). (Take n to be even so that one of the sample points falls at 0.)
Calculate the weight function (see section 2.6) corresponding to Gaussian
process regression with a particular covariance function and noise level,
and plot this for the point x = 0. Now compute the equivalent kernel cor-
responding to the covariance function (see, e.g. the examples in section
7.1.1), plot this on the same axes and compare results. Hint 1: Recall
that the equivalent kernel is defined in terms of integration (see eq. (7.7))
so that there will be a scaling factor of 1/(n+ 1). Hint 2: If you wish to
use large n (say > 1000), use the ngrid method described in section 2.6.

4. Consider Eg(X) as given in eq. (7.44) and choose a regular grid design X
so that δ0 = δn = 1/2n and δi = 1/n for i = 1, . . . , n−1. Show that Eg(X)
scales as O(n−1) asymptotically. Hint: when expanding 1− exp(−2αδi),
be sure to extend the expansion to sufficient order.

5. Compute numerically the expectation of Eg(X) eq. (7.44) over random
designs for the OU process example discussed in section 7.6. Make use
of the fact [David, 1970, eq. 2.3.4] that p(δ) = n(1− δ)n−1 for all the δi,
i = 0, . . . , n. Investigate the scaling behaviour of Eg(n) w.r.t. n.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Chapter 8

Approximation Methods for
Large Datasets

As we have seen in the preceding chapters a significant problem with Gaus-
sian process prediction is that it typically scales as O(n3). For large problems
(e.g. n > 10, 000) both storing the Gram matrix and solving the associated
linear systems are prohibitive on modern workstations (although this boundary
can be pushed further by using high-performance computers).

An extensive range of proposals have been suggested to deal with this prob-
lem. Below we divide these into five parts: in section 8.1 we consider reduced-
rank approximations to the Gram matrix; in section 8.2 a general strategy for
greedy approximations is described; in section 8.3 we discuss various methods
for approximating the GP regression problem for fixed hyperparameters; in sec-
tion 8.4 we describe various methods for approximating the GP classification
problem for fixed hyperparameters; and in section 8.5 we describe methods to
approximate the marginal likelihood and its derivatives. Many (although not
all) of these methods use a subset of size m < n of the training examples.

8.1 Reduced-rank Approximations of the Gram
Matrix

In the GP regression problem we need to invert the matrix K+σ2
nI (or at least

to solve a linear system (K + σ2
nI)v = y for v). If the matrix K has rank q (so

that it can be represented in the form K = QQ> where Q is an n× q matrix)
then this matrix inversion can be speeded up using the matrix inversion lemma
eq. (A.9) as (QQ>+σ2

nIn)−1 = σ−2
n In−σ−2

n Q(σ2
nIq +Q>Q)−1Q>. Notice that

the inversion of an n× n matrix has now been transformed to the inversion of
a q × q matrix.1

1For numerical reasons this is not the best way to solve such a linear system but it does
illustrate the savings that can be obtained with reduced-rank representations.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

172 Approximation Methods for Large Datasets

In the case that the kernel is derived from an explicit feature expansion with
N features, then the Gram matrix will have rank min(n,N) so that exploitation
of this structure will be beneficial if n > N . Even if the kernel is non-degenerate
it may happen that it has a fast-decaying eigenspectrum (see e.g. section 4.3.1)
so that a reduced-rank approximation will be accurate.

If K is not of rank < n, we can still consider reduced-rank approximations to
K. The optimal reduced-rank approximation of K w.r.t. the Frobenius norm
(see eq. (A.16)) is UqΛqU

>
q , where Λq is the diagonal matrix of the leading

q eigenvalues of K and Uq is the matrix of the corresponding orthonormal
eigenvectors [Golub and Van Loan, 1989, Theorem 8.1.9]. Unfortunately, this
is of limited interest in practice as computing the eigendecomposition is an
O(n3) operation. However, it does suggest that if we can more cheaply obtain
an approximate eigendecomposition then this may give rise to a useful reduced-
rank approximation to K.

We now consider selecting a subset I of the n datapoints; set I has size
m < n. The remaining n−m datapoints form the set R. (As a mnemonic, I is
for the included datapoints and R is for the remaining points.) We sometimes
call the included set the active set. Without loss of generality we assume that
the datapoints are ordered so that set I comes first. Thus K can be partitioned
as

K =
(

Kmm Km(n−m)

K(n−m)m K(n−m)(n−m)

)
. (8.1)

The top m×n block will also be referred to as Kmn and its transpose as Knm.

In section 4.3.2 we saw how to approximate the eigenfunctions of a kernel
using the Nyström method. We can now apply the same idea to approximating
the eigenvalues/vectors of K. We compute the eigenvectors and eigenvalues of
Kmm and denote them {λ(m)

i }mi=1 and {u(m)
i }mi=1. These are extended to all n

points using eq. (4.44) to give

λ̃
(n)
i ,

n

m
λ

(m)
i , i = 1, . . . ,m (8.2)

ũ(n)
i ,

√
m

n

1

λ
(m)
i

Knmu(m)
i , i = 1, . . . ,m (8.3)

where the scaling of ũ(n)
i has been chosen so that |ũ(n)

i | ' 1. In general we have
a choice of how many of the approximate eigenvalues/vectors to include in our
approximation of K; choosing the first p we get K̃ =

∑p
i=1 λ̃

(n)
i ũ(n)

i (ũ(n)
i)>.

Below we will set p = m to obtain

K̃ = KnmK
−1
mmKmn (8.4)

using equations 8.2 and 8.3, which we call the Nyström approximation to K.Nyström approximation

Computation of K̃ takes time O(m2n) as the eigendecomposition of Kmm is
O(m3) and the computation of each ũ(n)

i is O(mn). Fowlkes et al. [2001] have
applied the Nyström method to approximate the top few eigenvectors in a
computer vision problem where the matrices in question are larger than 106×106

in size.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

8.1 Reduced-rank Approximations of the Gram Matrix 173

The Nyström approximation has been applied above to approximate the
elements of K. However, using the approximation for the ith eigenfunction
φ̃i(x) = (

√
m/λ

(m)
i)km(x)>u(m)

i , where km(x) = (k(x,x1), . . . , k(x,xm))> (a
restatement of eq. (4.44) using the current notation) and λi ' λ

(m)
i /m it is

easy to see that in general we obtain an approximation for the kernel k(x,x′) =∑N
i=1 λiφi(x)φi(x′) as

k̃(x,x′) =
m∑

i=1

λ
(m)
i

m
φ̃i(x)φ̃i(x′) (8.5)

=
m∑

i=1

λ
(m)
i

m

m

(λ(m)
i)2

km(x)>u(m)
i (u(m)

i)>km(x′) (8.6)

= km(x)>K−1
mmkm(x′). (8.7)

Clearly eq. (8.4) is obtained by evaluating eq. (8.7) for all pairs of datapoints
in the training set.

By multiplying out eq. (8.4) using Kmn = [KmmKm(n−m)] it is easy to
show that Kmm = K̃mm, Km(n−m) = K̃m(n−m), K(n−m)m = K̃(n−m)m, but
that K̃(n−m)(n−m) = K(n−m)mK

−1
mmKm(n−m). The difference

K(n−m)(n−m) − K̃(n−m)(n−m) is in fact the Schur complement of Kmm [Golub
and Van Loan, 1989, p. 103]. It is easy to see that K(n−m)(n−m)−K̃(n−m)(n−m)

is positive semi-definite; if a vector f is partitioned as f> = (f>m, f
>
n−m) and f

has a Gaussian distribution with zero mean and covariance K then fn−m|fm
has the Schur complement as its covariance matrix, see eq. (A.6).

The Nyström approximation was derived in the above fashion by Williams
and Seeger [2001] for application to kernel machines. An alternative view which
gives rise to the same approximation is due to Smola and Schölkopf [2000] (and
also Schölkopf and Smola [2002, sec. 10.2]). Here the starting point is that we
wish to approximate the kernel centered on point xi as a linear combination of
kernels from the active set, so that

k(xi,x) '
∑
j∈I

cijk(xj ,x) , k̂(xi,x) (8.8)

for some coefficients {cij} that are to be determined so as to optimize the
approximation. A reasonable criterion to minimize is

E(C) =
n∑

i=1

‖k(xi,x)− k̂(xi,x)‖2H (8.9)

= trK − 2 tr(CKmn) + tr(CKmmC
>), (8.10)

where the coefficients are arranged into a n ×m matrix C. Minimizing E(C)
w.r.t. C gives Copt = KnmK

−1
mm; thus we obtain the approximation K̂ =

KnmK
−1
mmKmn in agreement with eq. (8.4). Also, it can be shown that E(Copt) =

tr(K − K̂).

Smola and Schölkopf [2000] suggest a greedy algorithm to choose points to
include into the active set so as to minimize the error criterion. As it takes

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

174 Approximation Methods for Large Datasets

O(mn) operations to evaluate the change in E due to including one new dat-
apoint (see exercise 8.7.2) it is infeasible to consider all members of set R for
inclusion on each iteration; instead Smola and Schölkopf [2000] suggest find-
ing the best point to include from a randomly chosen subset of set R on each
iteration.

Recent work by Drineas and Mahoney [2005] analyzes a similar algorithm
to the Nyström approximation, except that they use biased sampling with re-
placement (choosing column i of K with probability ∝ k2

ii) and a pseudoinverse
of the inner m ×m matrix. For this algorithm they are able to provide prob-
abilistic bounds on the quality of the approximation. Earlier work by Frieze
et al. [1998] had developed an approximation to the singular value decomposi-
tion (SVD) of a rectangular matrix using a weighted random subsampling of its
rows and columns, and probabilistic error bounds. However, this is rather differ-
ent from the Nyström approximation; see Drineas and Mahoney [2005, sec. 5.2]
for details.

Fine and Scheinberg [2002] suggest an alternative low-rank approximation
to K using the incomplete Cholesky factorization (see Golub and Van Loan
[1989, sec. 10.3.2]). The idea here is that when computing the Cholesky de-
composition of K pivots below a certain threshold are skipped.2 If the number
of pivots greater than the threshold is k the incomplete Cholesky factorization
takes time O(nk2).

8.2 Greedy Approximation

Many of the methods described below use an active set of training points of size
m selected from the training set of size n > m. We assume that it is impossible
to search for the optimal subset of size m due to combinatorics. The points
in the active set could be selected randomly, but in general we might expect
better performance if the points are selected greedily w.r.t. some criterion. In
the statistics literature greedy approaches are also known as forward selection
strategies.

A general recipe for greedy approximation is given in Algorithm 8.1. The
algorithm starts with the active set I being empty, and the set R containing the
indices of all training examples. On each iteration one index is selected from R
and added to I. This is achieved by evaluating some criterion ∆ and selecting
the data point that optimizes this criterion. For some algorithms it can be too
expensive to evaluate ∆ on all points in R, so some working set J ⊂ R can be
chosen instead, usually at random from R.

Greedy selection methods have been used with the subset of regressors (SR),
subset of datapoints (SD) and the projected process (PP) methods described
below.

2As a technical detail, symmetric permutations of the rows and columns are required to
stabilize the computations.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

8.3 Approximations for GPR with Fixed Hyperparameters 175

input: m, desired size of active set
2: Initialization I = ∅, R = {1, . . . , n}

for j := 1 . . .m do
4: Create working set J ⊆ R

Compute ∆j for all j ∈ J
6: i = argmaxj∈J∆j

Update model to include data from example i
8: I ← I ∪ {i}, R← R\{i}

end for
10: return: I
Algorithm 8.1: General framework for greedy subset selection. ∆j is the criterion
function evaluated on data point j.

8.3 Approximations for GPR with Fixed Hy-
perparameters

We present six approximation schemes for GPR below, namely the subset of
regressors (SR), the Nyström method, the subset of datapoints (SD), the pro-
jected process (PP) approximation, the Bayesian committee machine (BCM)
and the iterative solution of linear systems. Section 8.3.7 provides a summary
of these methods and a comparison of their performance on the SARCOS data
which was introduced in section 2.5.

8.3.1 Subset of Regressors

Silverman [1985, sec. 6.1] showed that the mean GP predictor can be ob-
tained from a finite-dimensional generalized linear regression model f(x∗) =∑n

i=1 αik(x∗,xi) with a prior α ∼ N (0,K−1). To see this we use the mean
prediction for linear regression model in feature space given by eq. (2.11),
i.e. f̄(x∗) = σ−2

n φ(x∗)>A−1Φy with A = Σ−1
p + σ−2

n ΦΦ>. Setting φ(x∗) =
k(x∗), Φ = Φ> = K and Σ−1

p = K we obtain

f̄(x∗) = σ−2
n k>(x∗)[σ−2

n K(K + σ2
nI)]

−1Ky (8.11)

= k>(x∗)(K + σ2
nI)

−1y, (8.12)

in agreement with eq. (2.25). Note, however, that the predictive (co)variance
of this model is different from full GPR.

A simple approximation to this model is to consider only a subset of regres-
sors, so that

fSR(x∗) =
m∑

i=1

αik(x∗,xi), with αm ∼ N (0,K−1
mm). (8.13)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

176 Approximation Methods for Large Datasets

Again using eq. (2.11) we obtain

f̄SR(x∗) = km(x∗)>(KmnKnm + σ2
nKmm)−1Kmny, (8.14)

V[fSR(x∗)] = σ2
nkm(x∗)>(KmnKnm + σ2

nKmm)−1km(x∗). (8.15)

Thus the posterior mean for αm is given by

ᾱm = (KmnKnm + σ2
nKmm)−1Kmny. (8.16)

This method has been proposed, for example, in Wahba [1990, chapter 7], and
in Poggio and Girosi [1990, eq. 25] via the regularization framework. The name
“subset of regressors” (SR) was suggested to us by G. Wahba. The computa-
tions for equations 8.14 and 8.15 take time O(m2n) to carry out the necessary
matrix computations. After this the prediction of the mean for a new test point
takes time O(m), and the predictive variance takes O(m2).

Under the subset of regressors model we have f ∼ N (0, K̃) where K̃ isSR marginal likelihood

defined as in eq. (8.4). Thus the log marginal likelihood under this model is

log pSR(y|X) = −1
2

log |K̃ + σ2
nIn| −

1
2
y>(K̃ + σ2

nIn)−1y − n

2
log(2π). (8.17)

Notice that the covariance function defined by the SR model has the form
k̃(x,x′) = k(x)>K−1

mmk(x′), which is exactly the same as that from the Nyström
approximation for the covariance function eq. (8.7). In fact if the covariance
function k(x,x′) in the predictive mean and variance equations 2.25 and 2.26
is replaced systematically with k̃(x,x′) we obtain equations 8.14 and 8.15, as
shown in Appendix 8.6.

If the kernel function decays to zero for |x| → ∞ for fixed x′, then k̃(x,x)
will be near zero when x is distant from points in the set I. This will be the case
even when the kernel is stationary so that k(x,x) is independent of x. Thus
we might expect that using the approximate kernel will give poor predictions,
especially underestimates of the predictive variance, when x is far from points
in the set I.

An interesting idea suggested by Rasmussen and Quiñonero-Candela [2005]
to mitigate this problem is to define the SR model with m + 1 basis func-
tions, where the extra basis function is centered on the test point x∗, so that
ySR∗(x∗) =

∑m
i=1 αik(x∗,xi) + α∗k(x∗,x∗). This model can then be used to

make predictions, and it can be implemented efficiently using the partitioned
matrix inverse equations A.11 and A.12. The effect of the extra basis function
centered on x∗ is to maintain predictive variance at the test point.

So far we have not said how the subset I should be chosen. One sim-
ple method is to choose it randomly from X, another is to run clustering on
{xi}ni=1 to obtain centres. Alternatively, a number of greedy forward selection
algorithms for I have been proposed. Luo and Wahba [1997] choose the next
kernel so as to minimize the residual sum of squares (RSS) |y−Knmαm|2 after
optimizing αm. Smola and Bartlett [2001] take a similar approach, but choose
as their criterion the quadratic form

1
σ2

n

|y −Knmᾱm|2 + ᾱ>mKmmᾱm = y>(K̃ + σ2
nIn)−1y, (8.18)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

8.3 Approximations for GPR with Fixed Hyperparameters 177

where the right hand side follows using eq. (8.16) and the matrix inversion
lemma. Alternatively, Quiñonero-Candela [2004] suggests using the approxi-
mate log marginal likelihood log pSR(y|X) (see eq. (8.17)) as the selection cri-
terion. In fact the quadratic term from eq. (8.18) is one of the terms comprising
log pSR(y|X).

For all these suggestions the complexity of evaluating the criterion on a new
example is O(mn), by making use of partitioned matrix equations. Thus it is
likely to be too expensive to consider all points in R on each iteration, and we
are likely to want to consider a smaller working set, as described in Algorithm
8.1.

Note that the SR model is obtained by selecting some subset of the data-
points of size m in a random or greedy manner. The relevance vector machine
(RVM) described in section 6.6 has a similar flavour in that it automatically comparison with RVM

selects (in a greedy fashion) which datapoints to use in its expansion. However,
note one important difference which is that the RVM uses a diagonal prior on
the α’s, while for the SR method we have αm ∼ N (0,K−1

mm).

8.3.2 The Nyström Method

Williams and Seeger [2001] suggested approximating the GPR equations by
replacing the matrix K by K̃ in the mean and variance prediction equations
2.25 and 2.26, and called this the Nyström method for approximate GPR. Notice
that in this proposal the covariance function k is not systematically replaced
by k̃, it is only occurrences of the matrix K that are replaced. As for the
SR model the time complexity is O(m2n) to carry out the necessary matrix
computations, and then O(n) for the predictive mean of a test point and O(mn)
for the predictive variance.

Experimental evidence in Williams et al. [2002] suggests that for large m
the SR and Nyström methods have similar performance, but for small m the
Nyström method can be quite poor. Also the fact that k is not systematically
replaced by k̃ means that embarrassments can occur like the approximated
predictive variance being negative. For these reasons we do not recommend the
Nyström method over the SR method. However, the Nyström method can be
effective when λm+1, the (m+ 1)th eigenvalue of K, is much smaller than σ2

n.

8.3.3 Subset of Datapoints

The subset of regressors method described above approximated the form of the
predictive distribution, and particularly the predictive mean. Another simple
approximation to the full-sample GP predictor is to keep the GP predictor,
but only on a smaller subset of size m of the data. Although this is clearly
wasteful of data, it can make sense if the predictions obtained with m points
are sufficiently accurate for our needs.

Clearly it can make sense to select which points are taken into the active set
I, and typically this is achieved by greedy algorithms. However, one has to be

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

178 Approximation Methods for Large Datasets

wary of the amount of computation that is needed, especially if one considers
each member of R at each iteration.

Lawrence et al. [2003] suggest choosing as the next point (or site) for in-
clusion into the active set the one that maximizes the differential entropy score
∆j , H[p(fj)] − H[pnew(fj)], where H[p(fj)] is the entropy of the Gaus-
sian at site j ∈ R (which is a function of the variance at site j as the poste-
rior is Gaussian, see eq. (A.20)), and H[pnew(fj)] is the entropy at this site
once the observation at site j has been included. Let the posterior variance
of fj before inclusion be vj . As p(fj |yI , yj) ∝ p(fj |yI)N (yj |fj , σ

2) we have
(vnew

j)−1 = v−1
j + σ−2. Using the fact that the entropy of a Gaussian with

variance v is log(2πev)/2 we obtain

∆j = 1
2 log(1 + vj/σ

2). (8.19)

∆j is a monotonic function of vj so that it is maximized by choosing the site with
the largest variance. Lawrence et al. [2003] call their method the informative
vector machine (IVM)IVM

If coded näıvely the complexity of computing the variance at all sites in R
on a single iteration is O(m3 + (n−m)m2) as we need to evaluate eq. (2.26) at
each site (and the matrix inversion of Kmm + σ2

nI can be done once in O(m3)
then stored). However, as we are incrementally growing the matrices Kmm

and Km(n−m) in fact the cost is O(mn) per inclusion, leading to an overall
complexity of O(m2n) when using a subset of size m. For example, once a site
has been chosen for inclusion the matrix Kmm + σ2

nI is grown by including an
extra row and column. The inverse of this expanded matrix can be found using
eq. (A.12) although it would be better practice numerically to use a Cholesky
decomposition approach as described in Lawrence et al. [2003]. The scheme
evaluates ∆j over all j ∈ R at each step to choose the inclusion site. This
makes sense when m is small, but as it gets larger it can make sense to select
candidate inclusion sites from a subset of R. Lawrence et al. [2003] call this the
randomized greedy selection method and give further ideas on how to choose
the subset.

The differential entropy score ∆j is not the only criterion that can be used for
site selection. For example the information gain criterion KL(pnew(fj)||p(fj))
can also be used (see Seeger et al., 2003). The use of greedy selection heuristics
here is similar to the problem of active learning, see e.g. MacKay [1992c].

8.3.4 Projected Process Approximation

The SR method has the unattractive feature that it is based on a degenerate
GP, the finite-dimensional model given in eq. (8.13). The SD method is a non-
degenerate process model but it only makes use of m datapoints. The projected
process (PP) approximation is also a non-degenerate process model but it can
make use of all n datapoints. We call it a projected process approximation
as it represents only m < n latent function values, but computes a likelihood
involving all n datapoints by projecting up the m latent points to n dimensions.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

8.3 Approximations for GPR with Fixed Hyperparameters 179

One problem with the basic GPR algorithm is the fact that the likelihood
term requires us to have f -values for the n training points. However, say we only
represent m of these values explicitly, and denote these as fm. Then the remain-
ing f -values in R denoted fn−m have a conditional distribution p(fn−m|fm), the
mean of which is given by E[fn−m|fm] = K(n−m)mK

−1
mmfm.3 Say we replace the

true likelihood term for the points in R byN (yn−m|E[fn−m|fm], σ2
nI). Including

also the likelihood contribution of the points in set I we have

q(y|fm) = N (y|KnmK
−1
mmfm, σ2

nI), (8.20)

which can also be written as q(y|fm) = N (y|E[f |fm], σ2
nI). The key feature here

is that we have absorbed the information in all n points of D into the m points
in I.

The form of q(y|fm) in eq. (8.20) might seem rather arbitrary, but in fact
it can be shown that if we consider minimizing KL(q(f |y)||p(f |y)), the KL-
divergence between the approximating distribution q(f |y) and the true posterior
p(f |y) over all q distributions of the form q(f |y) ∝ p(f)R(fm) where R is positive
and depends on fm only, this is the form we obtain. See Seeger [2003, Lemma 4.1
and sec. C.2.1] for detailed derivations, and also Csató [2002, sec. 3.3].

To make predictions we first have to compute the posterior distribution
q(fm|y). Define the shorthand P = K−1

mmKmn so that E[f |fm] = P>fm. Then
we have

q(y|fm) ∝ exp
(
− 1

2σ2
n

(y − P>fm)>(y − P>fm)
)
. (8.21)

Combining this with the prior p(fm) ∝ exp(−f>mK
−1
mmfm/2) we obtain

q(fm|y) ∝ exp
(
− 1

2
f>m(K−1

mm +
1
σ2

n

PP>)fm +
1
σ2

n

y>P>fm
)
, (8.22)

which can be recognized as a Gaussian N (µ, A) with

A−1 = σ−2
n (σ2

nK
−1
mm + PP>) = σ−2

n K−1
mm(σ2

nKmm +KmnKnm)K−1
mm, (8.23)

µ = σ−2
n APy = Kmm(σ2

nKmm +KmnKnm)−1Kmny. (8.24)

Thus the predictive mean is given by

Eq[f(x∗)] = km(x∗)>K−1
mmµ (8.25)

= km(x∗)>(σ2
nKmm +KmnKnm)−1Kmny, (8.26)

which turns out to be just the same as the predictive mean under the SR
model, as given in eq. (8.14). However, the predictive variance is different. The
argument is the same as in eq. (3.23) and yields

Vq[f(x∗)] = k(x∗,x∗)− km(x∗)>K−1
mmkm(x∗)

+ km(x∗)>K−1
mmcov(fm|y)K−1

mmkm(x∗)

= k(x∗,x∗)− km(x∗)>K−1
mmkm(x∗)

+ σ2
nkm(x∗)>(σ2

nKmm +KmnKnm)−1km(x∗). (8.27)
3There is no a priori reason why the m points chosen have to be a subset of the n points

in D—they could be disjoint from the training set. However, for our derivations below we
will consider them to be a subset.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

180 Approximation Methods for Large Datasets

Notice that predictive variance is the sum of the predictive variance under the
SR model (last term in eq. (8.27)) plus k(x∗,x∗)−km(x∗)>K−1

mmkm(x∗) which
is the predictive variance at x∗ given fm. Thus eq. (8.27) is never smaller than
the SR predictive variance and will become close to k(x∗,x∗) when x∗ is far
away from the points in set I.

As for the SR model it takes time O(m2n) to carry out the necessary matrix
computations. After this the prediction of the mean for a new test point takes
time O(m), and the predictive variance takes O(m2).

We have q(y|fm) = N (y|P>fm, σ2
nI) and p(fm) = N (0,Kmm). By integrat-

ing out fm we find that y ∼ N (0, K̃ + σ2
nIn). Thus the marginal likelihood

for the projected process approximation is the same as that for the SR model
eq. (8.17).

Again the question of how to choose which points go into the set I arises.
Csató and Opper [2002] present a method in which the training examples are
presented sequentially (in an “on-line” fashion). Given the current active set I
one can compute the novelty of a new input point; if this is large, then this point
is added to I, otherwise the point is added to R. To be precise, the novelty of
an input x is computed as k(x,x)−km(x)>K−1

mmk(x), which can be recognized
as the predictive variance at x given non-noisy observations at the points in I.
If the active set gets larger than some preset maximum size, then points can
be deleted from I, as specified in section 3.3 of Csató and Opper [2002]. Later
work by Csató et al. [2002] replaced the dependence of the algorithm described
above on the input sequence by an expectation-propagation type algorithm (see
section 3.6).

As an alternative method for selecting the active set, Seeger et al. [2003]
suggest using a greedy subset selection method as per Algorithm 8.1. Com-
putation of the information gain criterion after incorporating a new site takes
O(mn) and is thus too expensive to use as a selection criterion. However, an ap-
proximation to the information gain can be computed cheaply (see Seeger et al.
[2003, eq. 3] and Seeger [2003, sec. C.4.2] for further details) and this allows the
greedy subset algorithm to be run on all points in R on each iteration.

8.3.5 Bayesian Committee Machine

Tresp [2000] introduced the Bayesian committee machine (BCM) as a way of
speeding up Gaussian process regression. Let f∗ be the vector of function val-
ues at the test locations. Under GPR we obtain a predictive Gaussian distri-
bution for p(f∗|D). For the BCM we split the dataset into p parts D1, . . . ,Dp

where Di = (Xi,yi) and make the approximation that p(y1, . . . ,yp|f∗, X) '∏p
i=1 p(yi|f∗, Xi). Under this approximation we have

q(f∗|D1, . . . ,Dp) ∝ p(f∗)
p∏

i=1

p(yi|f∗, Xi) = c

∏p
i=1 p(f∗|Di)
pp−1(f∗)

, (8.28)

where c is a normalization constant. Using the fact that the terms in the
numerator and denomination are all Gaussian distributions over f∗ it is easy

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

8.3 Approximations for GPR with Fixed Hyperparameters 181

to show (see exercise 8.7.1) that the predictive mean and covariance for f∗ are
given by

Eq[f∗|D] = [covq(f∗|D)]
p∑

i=1

[cov(f∗|Di)]−1E[f∗|Di], (8.29)

[covq(f∗|D)]−1 = −(p− 1)K−1
∗∗ +

p∑
i=1

[cov(f∗|Di)]−1, (8.30)

where K∗∗ is the covariance matrix evaluated at the test points. Here E[f∗|Di]
and cov(f∗|Di) are the mean and covariance of the predictions for f∗ given Di,
as given in eqs. (2.23) and (2.24). Note that eq. (8.29) has an interesting form
in that the predictions from each part of the dataset are weighted by the inverse
predictive covariance.

We are free to choose how to partition the dataset D. This has two aspects,
the number of partitions and the assignment of data points to the partitions.
If we wish each partition to have size m, then p = n/m. Tresp [2000] used
a random assignment of data points to partitions but Schwaighofer and Tresp
[2003] recommend that clustering the data (e.g. with p-means clustering) can
lead to improved performance. However, note that compared to the greedy
schemes used above clustering does not make use of the target y values, only
the inputs x.

Although it is possible to make predictions for any number of test points
n∗, this slows the method down as it involves the inversion of n∗×n∗ matrices.
Schwaighofer and Tresp [2003] recommend making test predictions on blocks of
size m so that all matrices are of the same size. In this case the computational
complexity of BCM is O(pm3) = O(m2n) for predicting m test points, or
O(mn) per test point.

The BCM approach is transductive [Vapnik, 1995] rather than inductive, in
the sense that the method computes a test-set dependent model making use
of the test set input locations. Note also that if we wish to make a prediction
at just one test point, it would be necessary to “hallucinate” some extra test
points as eq. (8.28) generally becomes a better approximation as the number of
test points increases.

8.3.6 Iterative Solution of Linear Systems

One straightforward method to speed up GP regression is to note that the lin-
ear system (K + σ2

nI)v = y can be solved by an iterative method, for example
conjugate gradients (CG). (See Golub and Van Loan [1989, sec. 10.2] for fur-
ther details on the CG method.) Conjugate gradients gives the exact solution
(ignoring round-off errors) if run for n iterations, but it will give an approxi-
mate solution if terminated earlier, say after k iterations, with time complexity
O(kn2). This method has been suggested by Wahba et al. [1995] (in the context
of numerical weather prediction) and by Gibbs and MacKay [1997] (in the con-
text of general GP regression). CG methods have also been used in the context

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

182 Approximation Methods for Large Datasets

Method m SMSE MSLL mean runtime (s)
SD 256 0.0813 ± 0.0198 -1.4291 ± 0.0558 0.8

512 0.0532 ± 0.0046 -1.5834 ± 0.0319 2.1
1024 0.0398 ± 0.0036 -1.7149 ± 0.0293 6.5
2048 0.0290 ± 0.0013 -1.8611 ± 0.0204 25.0
4096 0.0200 ± 0.0008 -2.0241 ± 0.0151 100.7

SR 256 0.0351 ± 0.0036 -1.6088 ± 0.0984 11.0
512 0.0259 ± 0.0014 -1.8185 ± 0.0357 27.0
1024 0.0193 ± 0.0008 -1.9728 ± 0.0207 79.5
2048 0.0150 ± 0.0005 -2.1126 ± 0.0185 284.8
4096 0.0110 ± 0.0004 -2.2474 ± 0.0204 927.6

PP 256 0.0351 ± 0.0036 -1.6940 ± 0.0528 17.3
512 0.0259 ± 0.0014 -1.8423 ± 0.0286 41.4
1024 0.0193 ± 0.0008 -1.9823 ± 0.0233 95.1
2048 0.0150 ± 0.0005 -2.1125 ± 0.0202 354.2
4096 0.0110 ± 0.0004 -2.2399 ± 0.0160 964.5

BCM 256 0.0314 ± 0.0046 -1.7066 ± 0.0550 506.4
512 0.0281 ± 0.0055 -1.7807 ± 0.0820 660.5
1024 0.0180 ± 0.0010 -2.0081 ± 0.0321 1043.2
2048 0.0136 ± 0.0007 -2.1364 ± 0.0266 1920.7

Table 8.1: Test results on the inverse dynamics problem for a number of different
methods. Ten repetitions were used, the mean loss is shown ± one standard deviation.

of Laplace GPC, where linear systems are solved repeatedly to obtain the MAP
solution f̃ (see sections 3.4 and 3.5 for details).

One way that the CG method can be speeded up is by using an approximate
rather than exact matrix-vector multiplication. For example, recent work by
Yang et al. [2005] uses the improved fast Gauss transform for this purpose.

8.3.7 Comparison of Approximate GPR Methods

Above we have presented six approximation methods for GPR. Of these, we
retain only those methods which scale linearly with n, so the iterative solu-
tion of linear systems must be discounted. Also we discount the Nyström ap-
proximation in preference to the SR method, leaving four alternatives: subset
of regressors (SR), subset of data (SD), projected process (PP) and Bayesian
committee machine (BCM).

Table 8.1 shows results of the four methods on the robot arm inverse dy-
namics problem described in section 2.5 which has D = 21 input variables,
44,484 training examples and 4,449 test examples. As in section 2.5 we used
the squared exponential covariance function with a separate length-scale pa-
rameter for each of the 21 input dimensions.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

8.3 Approximations for GPR with Fixed Hyperparameters 183

Method Storage Initialization Mean Variance
SD O(m2) O(m3) O(m) O(m2)
SR O(mn) O(m2n) O(m) O(m2)
PP O(mn) O(m2n) O(m) O(m2)
BCM O(mn) O(mn) O(mn)

Table 8.2: A comparison of the space and time complexity of the four methods
using random selection of subsets. Initialization gives the time needed to carry out
preliminary matrix computations before the test point x∗ is known. Mean (resp.
variance) refers to the time needed to compute the predictive mean (variance) at x∗.

For the SD method a subset of the training data of size m was selected at
random, and the hyperparameters were set by optimizing the marginal likeli-
hood on this subset. As ARD was used, this involved the optimization of D+2
hyperparameters. This process was repeated 10 times, giving rise to the mean
and standard deviation recorded in Table 8.1. For the SR, PP and BCM meth-
ods, the same subsets of the data and hyperparameter vectors were used as had
been obtained from the SD experiments.4 Note that the m = 4096 result is not
available for BCM as this gave an out-of-memory error.

These experiments were conducted on a 2.0 GHz twin processor machine
with 3.74 GB of RAM. The code for all four methods was written in Matlab.5

A summary of the time complexities for the four methods are given in Table
8.2. Thus for a test set of size n∗ and using full (mean and variance) predictions
we find that the SD method has time complexity O(m3) + O(m2n∗), for the
SR and PP methods it is O(m2n) + O(m2n∗), and for the BCM method it
is O(mnn∗). Assuming that n∗ ≥ m these reduce to O(m2n∗), O(m2n) and
O(mnn∗) respectively. These complexities are in broad agreement with the
timings in Table 8.1.

The results from Table 8.1 are plotted in Figure 8.1. As we would expect,
the general trend is that as m increases the SMSE and MSLL scores decrease.
Notice that it is well worth doing runs with small m so as to obtain a learning
curve with respect to m; this helps in getting a feeling of how useful runs at
large m will be. Both in terms of SMSE and MSLL we see (not surprisingly)
that SD is inferior to the other methods, all of which have similar performance.

These results were obtained using a random selection of the active set. Some
experiments were also carried out using active selection for the SD method
(IVM) and for the SR method but these did not lead to significant improve-
ments in performance. For BCM we also experimented with the use of p-means
clustering instead of random assignment to partitions; again this did not lead
to significant improvements in performance. Overall on this dataset our con-

4In the BCM case it was only the hyperparameters that were re-used; the data was parti-
tioned randomly into blocks of size m.

5We thank Anton Schwaighofer for making his BCM code available to us.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

184 Approximation Methods for Large Datasets

256 512 1024 2048 4096
0

0.05

0.1

S
M

S
E

m

SD
SR and PP
BCM

256 512 1024 2048 4096

−2.2

−1.8

−1.4

M
SL

L

m

SD
PP
SR
BCM

(a) (b)

Figure 8.1: Panel(a): plot of SMSE against m. Panel(b) shows the MSLL for the four
methods. The error bars denote one standard deviation. For clarity in both panels
the BCM results are slightly displaced horizontally w.r.t. the SR results.

clusion is that for fixed m SR or PP are the methods of choice, as BCM has
longer running times for similar performance. However, notice that if we com-
pare on runtime, then SD for m = 4096 is competitive with the SR, PP and
BCM results for m = 1024 on both time and performance.

In the above experiments the hyperparameters for all methods were set by
optimizing the marginal likelihood of the SD model of size m. This means that
we get a direct comparison of the different methods using the same hyperparam-
eters and subsets. However, one could alternatively optimize the (approximate)
marginal likelihood for each method (see section 8.5) and then compare results.
Notice that the hyperparameters which optimize the approximate marginal like-
lihood may depend on the method. For example Figure 5.3(b) shows that
the maximum in the marginal likelihood occurs at shorter length-scales as the
amount of data increases. This effect has also been observed by V. Tresp and
A. Schwaighofer (pers. comm., 2004) when comparing the SD marginal likeli-
hood eq. (8.31) with the full marginal likelihood computed on all n datapoints
eq. (5.8).

Schwaighofer and Tresp [2003] report some experimental comparisons be-
tween the BCM method and some other approximation methods for a number
of synthetic regression problems. In these experiments they optimized the ker-
nel hyperparameters for each method separately. Their results are that for fixed
m BCM performs as well as or better than the other methods. However, these
results depend on factors such as the noise level in the data generating pro-
cess; they report (pers. comm., 2005) that for relatively large noise levels BCM
no longer displays an advantage. Based on the evidence currently available
we are unable to provide firm recommendations for one approximation method
over another; further research is required to understand the factors that affect
performance.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

8.4 Approximations for GPC with Fixed Hyperparameters 185

8.4 Approximations for GPC with Fixed Hy-
perparameters

The approximation methods for GPC are similar to those for GPR, but need
to deal with the non-Gaussian likelihood as well, either by using the Laplace
approximation, see section 3.4, or expectation propagation (EP), see section
3.6. In this section we focus mainly on binary classification tasks, although
some of the methods can also be extended to the multi-class case.

For the subset of regressors (SR) method we again use the model fSR(x∗) =∑m
i=1 αik(x∗,xi) with αm ∼ N (0,K−1

mm). The likelihood is non-Gaussian but
the optimization problem to find the MAP value of αm is convex and can be
obtained using a Newton iteration. Using the MAP value α̂m and the Hessian
at this point we obtain a predictive mean and variance for f(x∗) which can be
fed through the sigmoid function to yield probabilistic predictions. As usual
the question of how to choose a subset of points arises; Lin et al. [2000] select
these using a clustering method, while Zhu and Hastie [2002] propose a forward
selection strategy.

The subset of datapoints (SD) method for GPC was proposed in Lawrence
et al. [2003], using an EP-style approximation of the posterior, and the differ-
ential entropy score (see section 8.3.3) to select new sites for inclusion. Note
that the EP approximation lends itself very naturally to sparsification: a sparse
model results when some site precisions (see eq. (3.51)) are zero, making the cor-
responding likelihood term vanish. A computational gain can thus be achieved
by ignoring likelihood terms whose site precisions are very small.

The projected process (PP) approximation can also be used with non-
Gaussian likelihoods. Csató and Opper [2002] present an “online” method
where the examples are processed sequentially, while Csató et al. [2002] give
an expectation-propagation type algorithm where multiple sweeps through the
training data are permitted.

The Bayesian committee machine (BCM) has also been generalized to deal
with non-Gaussian likelihoods in Tresp [2000]. As in the GPR case the dataset
is broken up into blocks, but now approximate inference is carried out using the
Laplace approximation in each block to yield an approximate predictive mean
Eq[f∗|Di] and approximate predictive covariance covq(f∗|Di). These predictions
are then combined as before using equations 8.29 and 8.30.

8.5 Approximating the Marginal Likelihood and ∗
its Derivatives

We consider approximations first for GP regression, and then for GP classifica-
tion. For GPR, both the SR and PP methods give rise to the same approximate
marginal likelihood as given in eq. (8.17). For the SD method, a very simple

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

186 Approximation Methods for Large Datasets

approximation (ignoring the datapoints not in the active set) is given by

log pSD(ym|Xm) = − 1
2 log |Kmm +σ2I|− 1

2y
>
m(Kmm +σ2I)−1ym− m

2 log(2π),
(8.31)

where ym is the subvector of y corresponding to the active set; eq. (8.31) is
simply the log marginal likelihood under the model ym ∼ N (0,Kmm + σ2I).

For the BCM, a simple approach would be to sum eq. (8.31) evaluated on
each partition of the dataset. This ignores interactions between the partitions.
Tresp and Schwaighofer (pers. comm., 2004) have suggested a more sophisti-
cated BCM-based method which approximately takes these interactions into
account.

For GPC under the SR approximation, one can simply use the Laplace or EP
approximations on the finite-dimensional model. For SD one can again ignore all
datapoints not in the active set and compute an approximation to log p(ym|Xm)
using either Laplace or EP. For the projected process (PP) method, Seeger
[2003, p. 162] suggests the following lower bound

log p(y|X) = log
∫
p(y|f)p(f) df = log

∫
q(f)

p(y|f)p(f)
q(f)

df

≥
∫
q(f) log

(p(y|f)p(f)
q(f)

)
df (8.32)

=
∫
q(f) log q(y|f) df −KL(q(f)||p(f))

=
n∑

i=1

∫
q(fi) log p(yi|fi) dfi −KL(q(fm)||p(fm)),

where q(f) is a shorthand for q(f |y) and eq. (8.32) follows from the equation
on the previous line using Jensen’s inequality. The KL divergence term can
be readily evaluated using eq. (A.23), and the one-dimensional integrals can be
tackled using numerical quadrature.

We are not aware of work on extending the BCM approximations to the
marginal likelihood to GPC.

Given the various approximations to the marginal likelihood mentioned
above, we may also want to compute derivatives in order to optimize it. Clearly
it will make sense to keep the active set fixed during the optimization, although
note that this clashes with the fact that methods that select the active set
might choose a different set as the covariance function parameters θ change.
For the classification case the derivatives can be quite complex due to the fact
that site parameters (such as the MAP values f̂ , see section 3.4.1) change as
θ changes. (We have already seen an example of this in section 5.5 for the
non-sparse Laplace approximation.) Seeger [2003, sec. 4.8] describes some ex-
periments comparing SD and PP methods for the optimization of the marginal
likelihood on both regression and classification problems.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

8.6 Appendix: Equivalence of SR and GPR Using the Nyström Approximate Kernel 187

8.6 Appendix: Equivalence of SR and GPR Us- ∗
ing the Nyström Approximate Kernel

In section 8.3 we derived the subset of regressors predictors for the mean and
variance, as given in equations 8.14 and 8.15. The aim of this appendix is to
show that these are equivalent to the predictors that are obtained by replacing
k(x,x′) systematically with k̃(x,x′) in the GPR prediction equations 2.25 and
2.26.

First for the mean. The GPR predictor is E[f(x∗)] = k(x∗)>(K+σ2
nI)

−1y.
Replacing all occurrences of k(x,x′) with k̃(x,x′) we obtain

E[f̃(x∗)] = k̃(x∗)>(K̃ + σ2
nI)

−1y (8.33)

= km(x∗)>K−1
mmKmn(KnmK

−1
mmKmn + σ2

nI)
−1y (8.34)

= σ−2
n km(x∗)>K−1

mmKmn

[
In −KnmQ

−1Kmn

]
y (8.35)

= σ−2
n km(x∗)>K−1

mm

[
Im −KmnKnmQ

−1
]
Kmny (8.36)

= σ−2
n km(x∗)>K−1

mm

[
σ2

nKmmQ
−1
]
Kmny (8.37)

= km(x∗)>Q−1Kmny, (8.38)

where Q = σ2
nKmm +KmnKnm, which agrees with eq. (8.14). Equation (8.35)

follows from eq. (8.34) by use of the matrix inversion lemma eq. (A.9) and
eq. (8.37) follows from eq. (8.36) using Im = (σ2

nKmm + KmnKnm)Q−1. For
the predictive variance we have

V[f̃∗] = k̃(x∗,x∗)− k̃(x∗)>(K̃ + σ2
nI)

−1k̃(x∗) (8.39)

= km(x∗)>K−1
mmkm(x∗)− (8.40)

km(x∗)>K−1
mmKmn(KnmK

−1
mmKmn + σ2

nI)
−1KnmK

−1
mmkm(x∗)

= km(x∗)>K−1
mmkm(x∗)− km(x∗)>Q−1KmnKnmK

−1
mmkm(x∗) (8.41)

= km(x∗)>
[
Im −Q−1KmnKnm

]
K−1

mmkm(x∗) (8.42)

= km(x∗)>Q−1σ2
nKmmK

−1
mmkm(x∗) (8.43)

= σ2
nkm(x∗)>Q−1km(x∗), (8.44)

in agreement with eq. (8.15). The step between eqs. (8.40) and (8.41) is obtained
from eqs. (8.34) and (8.38) above, and eq. (8.43) follows from eq. (8.42) using
Im = (σ2

nKmm +KmnKnm)Q−1.

8.7 Exercises

1. Verify that the mean and covariance of the BCM predictions (equations
8.29 and 8.30) are correct. If you are stuck, see Tresp [2000] for details.

2. Using eq. (8.10) and the fact that Copt = KnmK
−1
mm show that E(Copt) =

tr(K − K̃), where K̃ = KnmK
−1
mmKmn. Now consider adding one data-

point into set I, so that Kmm grows to K(m+1)(m+1). Using eq. (A.12)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

188 Approximation Methods for Large Datasets

show that the change in E due to adding the extra datapoint can be
computed in time O(mn). If you need help, see Schölkopf and Smola
[2002, sec. 10.2.2] for further details.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Chapter 9

Further Issues and
Conclusions

In the previous chapters of the book we have concentrated on giving a solid
grounding in the use of GPs for regression and classification problems, includ-
ing model selection issues, approximation methods for large datasets, and con-
nections to related models. In this chapter we provide some short descriptions
of other issues relating to Gaussian process prediction, with pointers to the
literature for further reading.

So far we have mainly discussed the case when the output target y is a single
label, but in section 9.1 we describe how to deal with the case that there are
multiple output targets. Similarly, for the regression problem we have focussed
on i.i.d. Gaussian noise; in section 9.2 we relax this condition to allow the
noise process to have correlations. The classification problem is characterized
by a non-Gaussian likelihood function; however, there are other non-Gaussian
likelihoods of interest, as described in section 9.3.

We may not only have observations of function values, by also on derivatives
of the target function. In section 9.4 we discuss how to make use of this infor-
mation in the GPR framework. Also it may happen that there is noise on the
observation of the input variable x; in section 9.5 we explain how this can be
handled. In section 9.6 we mention how more flexible models can be obtained
using mixtures of Gaussian process models.

As well as carrying out prediction for test inputs, one might also wish to try
to find the global optimum of a function within some compact set. Approaches
based on Gaussian processes for this problem are described in section 9.7. The
use of Gaussian processes to evaluate integrals is covered in section 9.8.

By using a scale mixture of Gaussians construction one can obtain a mul-
tivariate Student’s t distribution. This construction can be extended to give a
Student’s t process, as explained in section 9.9. One key aspect of the Bayesian
framework relates to the incorporation of prior knowledge into the problem

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

190 Further Issues and Conclusions

formulation. In some applications we not only have the dataset D but also ad-
ditional information. For example, for an optical character recognition problem
we know that translating the input pattern by one pixel will not change the
label of the pattern. Approaches for incorporating this knowledge are discussed
in section 9.10.

In this book we have concentrated on supervised learning problems. How-
ever, GPs can be used as components in unsupervised learning models, as de-
scribed in section 9.11. Finally, we close with some conclusions and an outlook
to the future in section 9.12.

9.1 Multiple Outputs

Throughout this book we have concentrated on the problem of predicting a
single output variable y from an input x. However, it can happen that one
may wish to predict multiple output variables (or channels) simultaneously.
For example in the robot inverse dynamics problem described in section 2.5
there are really seven torques to be predicted. A simple approach is to model
each output variable as independent from the others and treat them separately.
However, this may lose information and be suboptimal.

One way in which correlation can occur is through a correlated noise process.
Even if the output channels are a priori independent, if the noise process is
correlated then this will induce correlations in the posterior processes. Such
a situation is easily handled in the GP framework by considering the joint,
block-diagonal, prior over the function values of each channel.

Another way that correlation of multiple channels can occur is if the prior
already has this structure. For example in geostatistical situations there may be
correlations between the abundances of different ores, e.g. silver and lead. This
situation requires that the covariance function models not only the correlation
structure of each channel, but also the cross-correlations between channels.
Some work on this topic can be found in the geostatistics literature under
the name of cokriging, see e.g. Cressie [1993, sec. 3.2.3]. One way to inducecokriging

correlations between a number of output channels is to obtain them as linear
combinations of a number of latent channels, as described in Teh et al. [2005];
see also Micchelli and Pontil [2005]. A related approach is taken by Boyle and
Frean [2005] who introduce correlations between two processes by deriving them
as different convolutions of the same underlying white noise process.

9.2 Noise Models with Dependencies

The noise models used so far have almost exclusively assumed Gaussianity and
independence. Non-Gaussian likelihoods are mentioned in section 9.3 below.
Inside the family of Gaussian noise models, it is not difficult to model depen-coloured noise

dencies. This may be particularly useful in models involving time. We simply
add terms to the noise covariance function with the desired structure, including

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

9.3 Non-Gaussian Likelihoods 191

hyperparameters. In fact, we already used this approach for the atmospheric
carbon dioxide modelling task in section 5.4.3. Also, Murray-Smith and Girard
[2001] have used an autoregressive moving-average (ARMA) noise model (see ARMA

also eq. (B.51)) in a GP regression task.

9.3 Non-Gaussian Likelihoods

Our main focus has been on regression with Gaussian noise, and classification
using the logistic or probit response functions. However, Gaussian processes can
be used as priors with other likelihood functions. For example, Diggle et al.
[1998] were concerned with modelling count data measured geographically using
a Poisson likelihood with a spatially varying rate. They achieved this by placing
a GP prior over the log Poisson rate.

Goldberg et al. [1998] stayed with a Gaussian noise model, but introduced
heteroscedasticity, i.e. allowing the noise variance to be a function of x. This
was achieved by placing a GP prior on the log variance function. Neal [1997]
robustified GP regression by using a Student’s t-distributed noise model rather
than Gaussian noise. Chu and Ghahramani [2005] have described how to use
GPs for the ordinal regression problem, where one is given ranked preference
information as the target data.

9.4 Derivative Observations

Since differentiation is a linear operator, the derivative of a Gaussian process
is another Gaussian process. Thus we can use GPs to make predictions about
derivatives, and also to make inference based on derivative information. In
general, we can make inference based on the joint Gaussian distribution of
function values and partial derivatives. A covariance function k(·, ·) on function
values implies the following (mixed) covariance between function values and
partial derivatives, and between partial derivatives

cov
(
fi,

∂fj

∂xdj

)
=

∂k(xi,xj)
∂xdj

, cov
(∂fi

∂xdi
,
∂fj

∂xej

)
=

∂2k(xi,xj)
∂xdi∂xej

, (9.1)

see e.g. Papoulis [1991, ch. 10] or Adler [1981, sec. 2.2]. With n datapoints in
D dimensions, the complete joint distribution of f and its D partial derivatives
involves n(D+1) quantities, but in a typical application we may only have access
to or interest in a subset of these; we simply remove the rows and columns
from the joint matrix which are not needed. Observed function values and
derivatives may often have different noise levels, which are incorporated by
adding a diagonal contribution with differing hyperparameters. Inference and
predictions are done as usual. This approach was used in the context of learning
in dynamical systems by Solak et al. [2003]. In Figure 9.1 the posterior process
with and without derivative observations are compared. Noise-free derivatives
may be a useful way to enforce known constraints in a modelling problem.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

192 Further Issues and Conclusions

−4 −2 0 2 4

−2

−1

0

1

2

input, x

ou
tp

ut
, y

(x
)

−4 −2 0 2 4

−2

−1

0

1

2

input, x

ou
tp

ut
, y

(x
)

(a) (b)

Figure 9.1: In panel (a) we show four data points in a one dimensional noise-free
regression problem, together with three functions sampled from the posterior and the
95% confidence region in light grey. In panel (b) the same observations have been
augmented by noise-free derivative information, indicated by small tangent segments
at the data points. The covariance function is the squared exponential with unit
process variance and unit length-scale.

9.5 Prediction with Uncertain Inputs

It can happen that the input values to a prediction problem can be uncer-
tain. For example, for a discrete time series one can perform multi-step-ahead
predictions by iterating one-step-ahead predictions. However, if the one-step-
ahead predictions include uncertainty, then it is necessary to propagate this
uncertainty forward to get the proper multi-step-ahead predictions. One sim-
ple approach is to use sampling methods. Alternatively, it may be possible to
use analytical approaches. Girard et al. [2003] showed that it is possible to
compute the mean and variance of the output analytically when using the SE
covariance function and Gaussian input noise.

More generally, the problem of regression with uncertain inputs has been
studied in the statistics literature under the name of errors-in-variables regres-
sion. See Dellaportas and Stephens [1995] for a Bayesian treatment of the
problem and pointers to the literature.

9.6 Mixtures of Gaussian Processes

In chapter 4 we have seen many ideas for making the covariance functions
more flexible. Another route is to use a mixture of different Gaussian process
models, each one used in some local region of input space. This kind of model
is generally known as a mixture of experts model and is due to Jacobs et al.
[1991]. In addition to the local expert models, the model has a manager that
(probabilistically) assigns points to the experts. Rasmussen and Ghahramani
[2002] used Gaussian process models as local experts, and based their manager
on another type of stochastic process: the Dirichlet process. Inference in this
model required MCMC methods.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

9.7 Global Optimization 193

9.7 Global Optimization

Often one is faced with the problem of being able to evaluate a continuous
function g(x), and wishing to find the global optimum (maximum or minimum)
of this function within some compact set A ⊂ RD. There is a very large
literature on the problem of global optimization; see Neumaier [2005] for a
useful overview.

Given a dataset D = {(xi, g(xi))|i=1, . . . , n}, one appealing approach is to
fit a GP regression model to this data. This will give a mean prediction and
predictive variance for every x ∈ A. Jones [2001] examines a number of criteria
that have been suggested for where to make the next function evaluation based
on the predictive mean and variance. One issue with this approach is that one
may need to search to find the optimum of the criterion, which may itself be
multimodal optimization problem. However, if evaluations of g are expensive
or time-consuming, it can make sense to work hard on this new optimization
problem.

For historical references and further work in this area see Jones [2001] and
Ritter [2000, sec. VIII.2].

9.8 Evaluation of Integrals

Another interesting and unusual application of Gaussian processes is for the
evaluation of the integrals of a deterministic function f . One evaluates the
function at a number of locations, and then one can use a Gaussian process as
a posterior over functions. This posterior over functions induces a posterior over
the value of the integral (since each possible function from the posterior would
give rise to a particular value of the integral). For some covariance functions
(e.g. the squared exponential), one can compute the expectation and variance of
the value of the integral analytically. It is perhaps unusual to think of the value
of the integral as being random (as it does have one particular deterministic
value), but it is perfectly in line of Bayesian thinking that you treat all kinds
of uncertainty using probabilities. This idea was proposed under the name of
Bayes-Hermite quadrature by O’Hagan [1991], and later under the name of
Bayesian Monte Carlo in Rasmussen and Ghahramani [2003].

Another approach is related to the ideas of global optimization in the section combining GPs
with MCMC9.7 above. One can use a GP model of a function to aid an MCMC sampling

procedure, which may be advantageous if the function of interest is computa-
tionally expensive to evaluate. Rasmussen [2003] combines Hybrid Monte Carlo
with a GP model of the log of the integrand, and also uses derivatives of the
function (discussed in section 9.4) to get an accurate model of the integrand
with very few evaluations.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

194 Further Issues and Conclusions

9.9 Student’s t Process

A Student’s t process can be obtained by applying the scale mixture of Gaus-scale mixture

sians construction of a Student’s t distribution to a Gaussian process [O’Hagan,
1991, O’Hagan et al., 1999]. We divide the covariances by the scalar τ and put
a gamma distribution on τ with shape α and mean β so that

k̃(x,x′) = τ−1k(x,x′), p(τ |α, β) =
αα

βαΓ(α)
τα−1 exp

(
− τα

β

)
, (9.2)

where k is any valid covariance function. Now the joint prior distribution of
any finite number n of function values y becomes

p(y|α, β,θ) =
∫
N (y|0, τ−1Ky)p(τ |α, β)dτ

=
Γ(α+ n/2)(2πα)−n/2

Γ(α)|β−1Ky|−1/2

(
1 +

βy>K−1
y y

2α

)−(α+n/2)

,

(9.3)

which is recognized as the zero mean, multivariate Student’s t distribution
with 2α degrees of freedom: p(y|α, β,θ) = T (0, β−1Ky, 2α). We could state a
definition analogous to definition 2.1 on page 13 for the Gaussian process, and
write

f ∼ T P(0, β−1K, 2α), (9.4)

cf. eq. (2.14). The marginal likelihood can be directly evaluated using eq. (9.3),
and training can be achieved using the methods discussed in chapter 5 regarding
α and β as hyperparameters. The predictive distribution for test cases are also
t distributions, the derivation of which is left as an exercise below.

Notice that the above construction is clear for noise-free processes, but that
the interpretation becomes more complicated if the covariance function k(x,x′)
contains a noise contribution. The noise and signal get entangled by the com-noise entanglement

mon factor τ , and the observations can no longer be written as the sum of
independent signal and noise contributions. Allowing for independent noise
contributions removes analytic tractability, which may reduce the usefulness of
the t process.

Exercise Using the scale mixture representation from eq. (9.3) derive the poste-
rior predictive distribution for a Student’s t process.

Exercise Consider the generating process implied by eq. (9.2), and write a pro-
gram to draw functions at random. Characterize the difference between the
Student’s t process and the corresponding Gaussian process (obtained in the
limit α→∞), and explain why the t process is perhaps not as exciting as one
might have hoped.

9.10 Invariances

It can happen that the input is apparently in vector form but in fact it has
additional structure. A good example is a pixelated image, where the 2-d array

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

9.10 Invariances 195

of pixels can be arranged into a vector (e.g. in raster-scan order). Imagine that
the image is of a handwritten digit; then we know that if the image is translated
by one pixel it will remain the same digit. Thus we have knowledge of certain
invariances of the input pattern. In this section we describe a number of ways
in which such invariances can be exploited. Our discussion is based on Schölkopf
and Smola [2002, ch. 11].

Prior knowledge about the problem tells us that certain transformations of
the input would leave the class label invariant—these include simple geometric
transformations such as translations, rotations,1 rescalings, and rather less ob-
vious ones such as line thickness transformations.2 Given enough data it should
be possible to learn the correct input-output mapping, but it would make sense
to try to make use of these known invariances to reduce the amount of training
data needed. There are at least three ways in which this prior knowledge has
been used, as described below.

The first approach is to generate synthetic training examples by applying synthetic training
examplesvalid transformations to the examples we already have. This is simple but it

does have the disadvantage of creating a larger training set. As kernel-machine
training algorithms typically scale super-linearly with n this can be problematic.

A second approach is to make the predictor invariant to small transforma-
tions of each training case; this method was first developed by Simard et al. tangent prop

[1992] for neural networks under the name of “tangent prop”. For a single
training image we consider the manifold of images that are generated as various
transformations are applied to it. This manifold will have a complex structure,
but locally we can approximate it by a tangent space. The idea in “tangent
prop” is that the output should be invariant to perturbations of the training
example in this tangent space. For neural networks it is quite straightforward
to modify the training objective function to penalize deviations from this in-
variance, see Simard et al. [1992] for details. Section 11.4 in Schölkopf and
Smola [2002] describes some ways in which these ideas can be extended to
kernel machines.

The third approach to dealing with invariances is to develop a representation invariant representation

of the input which is invariant to some or all of the transformations. For
example, binary images of handwritten digits are sometimes “skeletonized” to
remove the effect of line thickness. If an invariant representation can be achieved
for all transformations it is the most desirable, but it can be difficult or perhaps
impossible to achieve. For example, if a given training pattern can belong to
more than one class (e.g. an ambiguous handwritten digit) then it is clearly not
possible to find a new representation which is invariant to transformations yet
leaves the classes distinguishable.

1The digit recognition problem is only invariant to small rotations; we must avoid turning
a 6 into a 9.

2i.e. changing the thickness of the pen we write with within reasonable bounds does not
change the digit we write.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

196 Further Issues and Conclusions

9.11 Latent Variable Models

Our main focus in this book has been on supervised learning. However, GPs
have also been used as components for models carrying out non-linear dimen-
sionality reduction, a form of unsupervised learning. The key idea is that data
which is apparently high-dimensional (e.g. a pixelated image) may really lie on
a low-dimensional non-linear manifold which we wish to model.

Let z ∈ RL be a latent (or hidden) variable, and let x ∈ RD be a visible
variable. We suppose that our visible data is generated by picking a point in
z-space and mapping this point into the data space through a (possibly non-
linear) mapping, and then optionally adding noise. Thus p(x) =

∫
p(x|z)p(z)dz.

If the mapping from z to x is linear and z has a Gaussian distribution then
this is the factor analysis model, and the mean and covariance of the Gaussian
in x-space can easily be determined. However, if the mapping is non-linear
then the integral cannot be computed exactly. In the generative topographicGTM

mapping (GTM) model [Bishop et al., 1998b] the integral was approximated
using a grid of points in z-space. In the original GTM paper the non-linear
mapping was taken to be a linear combination of non-linear basis functions,
but in Bishop et al. [1998a] this was replaced by a Gaussian process mapping
between the latent and visible spaces.

More recently Lawrence [2004] has introduced a rather different model known
as the Gaussian process latent variable model (GPLVM). Instead of having aGPLVM

prior (and thus a posterior) distribution over the latent space, we consider that
each data point xi is derived from a corresponding latent point zi through
a non-linear mapping (with added noise). If a Gaussian process is used for
this non-linear mapping, then one can easily write down the joint distribution
p(X|Z) of the visible variables conditional on the latent variables. Optimization
routines can then be used to find the locations of the latent points that opti-
mize p(X|Z). This has some similarities to the work on regularized principal
manifolds [Schölkopf and Smola, 2002, ch. 17] except that in the GPLVM one
integrates out the latent-to-visible mapping rather than optimizing it.

9.12 Conclusions and Future Directions

In this section we briefly wrap up some of the threads we have developed
throughout the book, and discuss possible future directions of work on Gaussian
processes.

In chapter 2 we saw how Gaussian process regression is a natural extension
of Bayesian linear regression to a more flexible class of models. For Gaussian
noise the model can be treated analytically, and is simple enough that the GP
model could be often considered as a replacement for the traditional linear
analogue. We have also seen that historically there have been numerous ideas
along the lines of Gaussian process models, although they have only gained a
sporadic following.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

9.12 Conclusions and Future Directions 197

One may indeed speculate, why are GPs not currently used more widely in
applications? We see three major reasons: (1) Firstly, that the application of
Gaussian processes requires the handling (inversion) of large matrices. While
these kinds of computations were tedious 20 years ago, and impossible further
in the past, even näıve implementations suffice for moderate sized problems on
an anno 2005 PC. (2) Another possibility is that most of the historical work
on GPs was done using fixed covariance functions, with very little guide as
to how to choose such functions. The choice was to some degree arbitrary,
and the idea that one should be able to infer the structure or parameters of
the covariance function as we discuss in chapter 5 is not so well known. This
is probably a very important step in turning GPs into an interesting method
for practitioners. (3) The viewpoint of placing Gaussian process priors over
functions is a Bayesian one. Although the adoption of Bayesian methods in the
machine learning community is quite widespread, these ideas have not always
been appreciated more widely in the statistics community.

Although modern computers allow simple implementations for up to a few
thousand training cases, the computational constraints are still a significant
limitation for applications where the datasets are significantly larger than this.
In chapter 8 we have given an overview of some of the recent work on approx-
imations for large datasets. Although there are many methods and a lot of
work is currently being undertaken, both the theoretical and practical aspects
of these approximations need to be understood better in order to be a useful
tool to the practitioner.

The computations required for the Gaussian process classification models
developed in chapter 3 are a lot more involved than for regression. Although
the theoretical foundations of Gaussian process classification are well developed,
it is not yet clear under which circumstances one would expect the extra work
and approximations associated with treating a full probabilistic latent variable
model to pay off. The answer may depend heavily on the ability to learn
meaningful covariance functions.

The incorporation of prior knowledge through the choice and parameter-
ization of the covariance function is another prime target for future work on
GPs. In chapter 4 we have presented many families of covariance functions with
widely differing properties, and in chapter 5 we presented principled methods
for choosing between and adapting covariance functions. Particularly in the
machine learning community, there has been a tendency to view Gaussian pro-
cesses as a “black box”—what exactly goes on in the box is less important, as
long as it gives good predictions. To our mind, we could perhaps learn some-
thing from the statisticians here, and ask how and why the models work. In fact
the hierarchical formulation of the covariance functions with hyperparameters,
the testing of different hypotheses and the adaptation of hyperparameters gives
an excellent opportunity to understand more about the data.

We have attempted to illustrate this line of thinking with the carbon dioxide
prediction example developed at some length in section 5.4.3. Although this
problem is comparatively simple and very easy to get an intuitive understanding
of, the principles of trying out different components in the covariance structure

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

198 Further Issues and Conclusions

and adapting their parameters could be used universally. Indeed, the use of
the isotropic squared exponential covariance function in the digit classification
examples in chapter 3 is not really a choice which one would expect to provide
very much insight to the classification problem. Although some of the results
presented are as good as other current methods in the literature, one could
indeed argue that the use of the squared exponential covariance function for this
task makes little sense, and the low error rate is possibly due to the inherently
low difficulty of the task. There is a need to develop more sensible covariance
functions which allow for the incorporation of prior knowledge and help us to
gain real insight into the data.

Going beyond a simple vectorial representation of the input data to take
into account structure in the input domain is also a theme which we see as very
important. Examples of this include the invariances described in section 9.10
arising from the structure of images, and the kernels described in section 4.4
which encode structured objects such as strings and trees.

As this brief discussion shows, we see the current level of development of
Gaussian process models more as a rich, principled framework for supervised
learning than a fully-developed set of tools for applications. We find the Gaus-
sian process framework very appealing and are confident that the near future
will show many important developments, both in theory, methodology and prac-
tice. We look forward very much to following these developments.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Appendix A

Mathematical Background

A.1 Joint, Marginal and Conditional Probability

Let the n (discrete or continuous) random variables y1, . . . , yn have a joint joint probability

probability p(y1, . . . , yn), or p(y) for short.1 Technically, one ought to distin-
guish between probabilities (for discrete variables) and probability densities for
continuous variables. Throughout the book we commonly use the term “prob-
ability” to refer to both. Let us partition the variables in y into two groups, yA

and yB , where A and B are two disjoint sets whose union is the set {1, . . . , n},
so that p(y) = p(yA,yB). Each group may contain one or more variables.

The marginal probability of yA is given by marginal probability

p(yA) =
∫
p(yA,yB) dyB . (A.1)

The integral is replaced by a sum if the variables are discrete valued. Notice
that if the set A contains more than one variable, then the marginal probability
is itself a joint probability—whether it is referred to as one or the other depends
on the context. If the joint distribution is equal to the product of the marginals, independence

then the variables are said to be independent, otherwise they are dependent.

The conditional probability function is defined as conditional probability

p(yA|yB) =
p(yA,yB)
p(yB)

, (A.2)

defined for p(yB) > 0, as it is not meaningful to condition on an impossible
event. If yA and yB are independent, then the marginal p(yA) and the condi-
tional p(yA|yB) are equal.

1One can deal with more general cases where the density function does not exist by using
the distribution function.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

200 Mathematical Background

Using the definitions of both p(yA|yB) and p(yB |yA) we obtain Bayes’Bayes’ rule

theorem

p(yA|yB) =
p(yA)p(yB |yA)

p(yB)
. (A.3)

Since conditional distributions are themselves probabilities, one can use all of
the above also when further conditioning on other variables. For example, in
supervised learning, one often conditions on the inputs throughout, which would
lead e.g. to a version of Bayes’ rule with additional conditioning on X in all
four probabilities in eq. (A.3); see eq. (2.5) for an example of this.

A.2 Gaussian Identities

The multivariate Gaussian (or Normal) distribution has a joint probability den-Gaussian definition

sity given by

p(x|m,Σ) = (2π)−D/2|Σ|−1/2 exp
(
− 1

2 (x−m)>Σ−1(x−m)
)
, (A.4)

where m is the mean vector (of length D) and Σ is the (symmetric, positive
definite) covariance matrix (of size D × D). As a shorthand we write x ∼
N (m,Σ).

Let x and y be jointly Gaussian random vectors[
x
y

]
∼ N

([
µx

µy

]
,

[
A C
C> B

])
= N

([
µx

µy

]
,

[
Ã C̃

C̃> B̃

]−1
)
, (A.5)

then the marginal distribution of x and the conditional distribution of x givenconditioning and
marginalizing y are

x ∼ N (µx, A), and x|y ∼ N
(
µx + CB−1(y − µy), A− CB−1C>

)
or x|y ∼ N

(
µx − Ã−1C̃(y − µy), Ã−1

)
. (A.6)

See, e.g. von Mises [1964, sec. 9.3], and eqs. (A.11 - A.13).

The product of two Gaussians gives another (un-normalized) Gaussianproducts

N (x|a, A)N (x|b, B) = Z−1N (x|c, C) (A.7)

where c = C(A−1a +B−1b) and C = (A−1 +B−1)−1.

Notice that the resulting Gaussian has a precision (inverse variance) equal to
the sum of the precisions and a mean equal to the convex sum of the means,
weighted by the precisions. The normalizing constant looks itself like a Gaussian
(in a or b)

Z−1 = (2π)−D/2|A+B|−1/2 exp
(
− 1

2 (a− b)>(A+B)−1(a− b)
)
. (A.8)

To prove eq. (A.7) simply write out the (lengthy) expressions by introducing
eq. (A.4) and eq. (A.8) into eq. (A.7), and expand the terms inside the exp to

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

A.3 Matrix Identities 201

verify equality. Hint: it may be helpful to expand C using the matrix inversion
lemma, eq. (A.9), C = (A−1+B−1)−1 = A−A(A+B)−1A = B−B(A+B)−1B.

To generate samples x ∼ N (m,K) with arbitrary mean m and covariance generating multivariate
Gaussian samplesmatrix K using a scalar Gaussian generator (which is readily available in many

programming environments) we proceed as follows: first, compute the Cholesky
decomposition (also known as the “matrix square root”) L of the positive def-
inite symmetric covariance matrix K = LL>, where L is a lower triangular
matrix, see section A.4. Then generate u ∼ N (0, I) by multiple separate calls
to the scalar Gaussian generator. Compute x = m+Lu, which has the desired
distribution with mean m and covariance LE[uu>]L> = LL> = K (by the
independence of the elements of u).

In practice it may be necessary to add a small multiple of the identity
matrix εI to the covariance matrix for numerical reasons. This is because the
eigenvalues of the matrix K can decay very rapidly (see section 4.3.1 for a
closely related analytical result) and without this stabilization the Cholesky
decomposition fails. The effect on the generated samples is to add additional
independent noise of variance ε. From the context ε can usually be chosen to
have inconsequential effects on the samples, while ensuring numerical stability.

A.3 Matrix Identities

The matrix inversion lemma, also known as the Woodbury, Sherman & Morri- matrix inversion lemma

son formula (see e.g. Press et al. [1992, p. 75]) states that

(Z + UWV >)−1 = Z−1 − Z−1U(W−1 + V >Z−1U)−1V >Z−1, (A.9)

assuming the relevant inverses all exist. Here Z is n×n, W ism×m and U and V
are both of size n×m; consequently if Z−1 is known, and a low rank (i.e. m < n)
perturbation is made to Z as in left hand side of eq. (A.9), considerable speedup
can be achieved. A similar equation exists for determinants determinants

|Z + UWV >| = |Z| |W | |W−1 + V >Z−1U |. (A.10)

Let the invertible n× n matrix A and its inverse A−1 be partitioned into inversion of a
partitioned matrix

A =
(
P Q
R S

)
, A−1 =

(
P̃ Q̃

R̃ S̃

)
, (A.11)

where P and P̃ are n1 × n1 matrices and S and S̃ are n2 × n2 matrices with
n = n1 + n2. The submatrices of A−1 are given in Press et al. [1992, p. 77] as

P̃ = P−1 + P−1QMRP−1

Q̃ = −P−1QM

R̃ = −MRP−1

S̃ = M

where M = (S −RP−1Q)−1, (A.12)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

202 Mathematical Background

or equivalently

P̃ = N

Q̃ = −NQS−1

R̃ = −S−1RN

S̃ = S−1 + S−1RNQS−1

where N = (P −QS−1R)−1. (A.13)

A.3.1 Matrix Derivatives

Derivatives of the elements of an inverse matrix:derivative of inverse

∂

∂θ
K−1 = −K−1 ∂K

∂θ
K−1, (A.14)

where ∂K
∂θ is a matrix of elementwise derivatives. For the log determinant of aderivative of log

determinant positive definite symmetric matrix we have

∂

∂θ
log |K| = tr

(
K−1 ∂K

∂θ

)
. (A.15)

A.3.2 Matrix Norms

The Frobenius norm ‖A‖F of a n1 × n2 matrix A is defined as

‖A‖2F =
n1∑
i=1

n2∑
j=1

|aij |2 = tr(AA>), (A.16)

[Golub and Van Loan, 1989, p. 56].

A.4 Cholesky Decomposition

The Cholesky decomposition of a symmetric, positive definite matrix A decom-
poses A into a product of a lower triangular matrix L and its transpose

LL> = A, (A.17)

where L is called the Cholesky factor. The Cholesky decomposition is useful
for solving linear systems with symmetric, positive definite coefficient matrix
A. To solve Ax = b for x, first solve the triangular system Ly = b by forwardsolving linear systems

substitution and then the triangular system L>x = y by back substitution.
Using the backslash operator, we write the solution as x = L>\(L\b), where
the notation A\b is the vector x which solves Ax = b. Both the forward and
backward substitution steps require n2/2 operations, when A is of size n × n.computational cost

The computation of the Cholesky factor L is considered numerically extremely
stable and takes time n3/6, so it is the method of choice when it can be applied.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

A.5 Entropy and Kullback-Leibler Divergence 203

Note also that the determinant of a positive definite symmetric matrix can be determinant

calculated efficiently by

|A| =
n∏

i=1

L2
ii, or log |A| = 2

n∑
i=1

logLii, (A.18)

where L is the Cholesky factor from A.

A.5 Entropy and Kullback-Leibler Divergence

The entropy H[p(x)] of a distribution p(x) is a non-negative measure of the entropy

amount of “uncertainty” in the distribution, and is defined as

H[p(x)] = −
∫
p(x) log p(x) dx. (A.19)

The integral is substituted by a sum for discrete variables. Entropy is measured
in bits if the log is to the base 2 and in nats in the case of the natural log. The
entropy of a Gaussian in D dimensions, measured in nats is

H[N (µ,Σ)] = 1
2 log |Σ|+ D

2 (log 2πe). (A.20)

The Kullback-Leibler (KL) divergence (or relative entropy) KL(p||q) be-
tween two distributions p(x) and q(x) is defined as

KL(p||q) =
∫
p(x) log

p(x)
q(x)

dx. (A.21)

It is easy to show that KL(p||q) ≥ 0, with equality if p = q (almost everywhere).
For the case of two Bernoulli random variables p and q this reduces to divergence of Bernoulli

random variables

KLBer(p||q) = p log
p

q
+ (1− p) log

(1− p)
(1− q)

, (A.22)

where we use p and q both as the name and the parameter of the Bernoulli
distributions. For two Gaussian distributions N (µ0,Σ0) and N (µ1,Σ1) we divergence of Gaussians

have [Kullback, 1959, sec. 9.1]

KL(N0||N1) = 1
2 log |Σ1Σ−1

0 | +
1
2 trΣ−1

1

(
(µ0 − µ1)(µ0 − µ1)

> + Σ0 − Σ1

)
.

(A.23)

Consider a general distribution p(x) on RD and a Gaussian distribution q(x) = minimizing KL(p||q)
divergence leads to
moment matching

N (µ,Σ). Then

KL(p||q) =
∫

1
2 (x− µ)>Σ−1(x− µ)p(x) dx +

1
2 log |Σ|+ D

2 log 2π +
∫
p(x) log p(x) dx.

(A.24)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

204 Mathematical Background

Equation (A.24) can be minimized w.r.t. µ and Σ by differentiating w.r.t. these
parameters and setting the resulting expressions to zero. The optimal q is the
one that matches the first and second moments of p.

The KL divergence can be viewed as the extra number of nats needed on
average to code data generated from a source p(x) under the distribution q(x)
as opposed to p(x).

A.6 Limits

The limit of a rational quadratic is a squared exponential

lim
α→∞

(
1 +

x2

2α
)−α = exp

(
− x2

2
)
. (A.25)

A.7 Measure and Integration

Here we sketch some definitions concerning measure and integration; fuller
treatments can be found e.g. in Doob [1994] and Bartle [1995].

Let Ω be the set of all possible outcomes of an experiment. For example, for
a D-dimensional real-valued variable, Ω = RD. Let F be a σ-field of subsets
of Ω which contains all the events in whose occurrences we may be interested.2

Then µ is a countably additive measure if it is real and non-negative and for
all mutually disjoint sets A1, A2, . . . ∈ F we have

µ
(∞⋃

i=1

Ai

)
=

∞∑
i=1

µ(Ai). (A.26)

If µ(Ω) < ∞ then µ is called a finite measure and if µ(Ω) = 1 it is calledfinite measure

a probability measure. The Lebesgue measure defines a uniform measure overprobability measure

Lebesgue measure subsets of Euclidean space. Here an appropriate σ-algebra is the Borel σ-algebra
BD, where B is the σ-algebra generated by the open subsets of R. For example
on the line R the Lebesgue measure of the interval (a, b) is b− a.

We now restrict Ω to be RD and wish to give meaning to integration of a
function f : RD → R with respect to a measure µ∫

f(x) dµ(x). (A.27)

We assume that f is measurable, i.e. that for any Borel-measurable set A ∈ R,
f−1(A) ∈ BD. There are two cases that will interest us (i) when µ is the
Lebesgue measure and (ii) when µ is a probability measure. For the first case
expression (A.27) reduces to the usual integral notation

∫
f(x)dx.

2The restriction to a σ-field of subsets is important technically to avoid paradoxes such as
the Banach-Tarski paradox. Informally, we can think of the σ-field as restricting consideration
to “reasonable” subsets.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

A.8 Fourier Transforms 205

For a probability measure µ on x, the non-negative function p(x) is called
the density of the measure if for all A ∈ BD we have

µ(A) =
∫

A

p(x) dx. (A.28)

If such a density exists it is uniquely determined almost everywhere, i.e. except
for sets with measure zero. Not all probability measures have densities—only
distributions that assign zero probability to individual points in x-space can
have densities.3 If p(x) exists then we have∫

f(x) dµ(x) =
∫
f(x)p(x) dx. (A.29)

If µ does not have a density expression (A.27) still has meaning by the standard
construction of the Lebesgue integral.

For Ω = RD the probability measure µ can be related to the distribution
function F : RD → [0, 1] which is defined as F (z) = µ(x1 ≤ z1, . . . xD ≤
zD). The distribution function is more general than the density as it is always
defined for a given probability measure. A simple example of a random variable “point mass” example

which has a distribution function but no density is obtained by the following
construction: a coin is tossed and with probability p it comes up heads; if it
comes up heads x is chosen from U(0, 1) (the uniform distribution on [0, 1]),
otherwise (with probability 1−p) x is set to 1/2. This distribution has a “point
mass” (or atom) at x = 1/2.

A.7.1 Lp Spaces

Let µ be a measure on an input set X . For some function f : X → R and
1 ≤ p <∞, we define

‖f‖Lp(X ,µ) ,
(∫
|f(x)|p dµ(x)

)1/p

, (A.30)

if the integral exists. For p =∞ we define

‖f‖L∞(X ,µ) = ess sup
x∈X

|f(x)|, (A.31)

where ess sup denotes the essential supremum, i.e. the smallest number that
upper bounds |f(x)| almost everywhere. The function space Lp(X , µ) is defined
for any p in 1 ≤ p ≤ ∞ as the space of functions for which ‖f‖Lp(X ,µ) <∞.

A.8 Fourier Transforms

For sufficiently well-behaved functions on RD we have

f(x) =
∫ ∞

−∞
f̃(s)e2πis·x ds, f̃(s) =

∫ ∞

−∞
f(x)e−2πis·x dx, (A.32)

3A measure µ has a density if and only if it is absolutely continuous with respect to
Lebesgue measure on RD, i.e. every set that has Lebesgue measure zero also has µ-measure
zero.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

206 Mathematical Background

where f̃(s) is called the Fourier transform of f(x), see e.g. Bracewell [1986].
We refer to the equation on the left as the synthesis equation, and the equation
on the right as the analysis equation. There are other conventions for Fourier
transforms, particularly those involving ω = 2πs. However, this tends to de-
stroy symmetry between the analysis and synthesis equations so we use the
definitions given above.

Here we have defined Fourier transforms for f(x) being a function on RD.
For related transforms for periodic functions, functions defined on the integer
lattice and on the regular N -polygon see section B.1.

A.9 Convexity

Below we state some definitions and properties of convex sets and functions
taken from Boyd and Vandenberghe [2004].

A set C is convex if the line segment between any two points in C lies in C,convex sets

i.e. if for any x1, x2 ∈ C and for any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C. (A.33)

A function f : X → R is convex if its domain X is a convex set and if for allconvex function

x1, x2 ∈ X and θ with 0 ≤ θ ≤ 1, we have:

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2), (A.34)

where X is a (possibly improper) subset of RD. f is concave if −f is convex.

A function f is convex if and only if its domain X is a convex set and its
Hessian is positive semidefinite for all x ∈ X .

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Appendix B

Gaussian Markov Processes

Particularly when the index set for a stochastic process is one-dimensional such
as the real line or its discretization onto the integer lattice, it is very interesting
to investigate the properties of Gaussian Markov processes (GMPs). In this
Appendix we use X(t) to define a stochastic process with continuous time pa-
rameter t. In the discrete time case the process is denoted . . . , X−1, X0, X1, . . .
etc. We assume that the process has zero mean and is, unless otherwise stated,
stationary.

A discrete-time autoregressive (AR) process of order p can be written as AR process

Xt =
p∑

k=1

akXt−k + b0Zt, (B.1)

where Zt ∼ N (0, 1) and all Zt’s are i.i.d. . Notice the order-p Markov property
that given the history Xt−1, Xt−2, . . ., Xt depends only on the previous p X’s.
This relationship can be conveniently expressed as a graphical model; part of
an AR(2) process is illustrated in Figure B.1. The name autoregressive stems
from the fact that Xt is predicted from the p previous X’s through a regression
equation. If one stores the current X and the p − 1 previous values as a state
vector, then the AR(p) scalar process can be written equivalently as a vector
AR(1) process.

.

Figure B.1: Graphical model illustrating an AR(2) process.

Moving from the discrete time to the continuous time setting, the question
arises as to how generalize the Markov notion used in the discrete-time AR
process to define a continuoous-time AR process. It turns out that the correct
generalization uses the idea of having not only the function value but also p of
its derivatives at time t giving rise to the stochastic differential equation (SDE)1 SDE: stochastic

differential equation

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

208 Gaussian Markov Processes

apX
(p)(t) + ap−1X

(p−1)(t) + . . .+ a0X(t) = b0Z(t), (B.2)

where X(i)(t) denotes the ith derivative of X(t) and Z(t) is a white Gaus-
sian noise process with covariance δ(t − t′). This white noise process can be
considered the derivative of the Wiener process. To avoid redundancy in the
coefficients we assume that ap = 1. A considerable amount of mathemati-
cal machinery is required to make rigorous the meaning of such equations, see
e.g. Øksendal [1985]. As for the discrete-time case, one can write eq. (B.2) as
a first-order vector SDE by defining the state to be X(t) and its first p − 1
derivatives.

We begin this chapter with a summary of some Fourier analysis results in
section B.1. Fourier analysis is important to linear time invariant systems such
as equations (B.1) and (B.2) because e2πist is an eigenfunction of the corre-
sponding difference (resp differential) operator. We then move on in section
B.2 to discuss continuous-time Gaussian Markov processes on the real line and
their relationship to the same SDE on the circle. In section B.3 we describe
discrete-time Gaussian Markov processes on the integer lattice and their re-
lationship to the same difference equation on the circle. In section B.4 we
explain the relationship between discrete-time GMPs and the discrete sampling
of continuous-time GMPs. Finally in section B.5 we discuss generalizations
of the Markov concept in higher dimensions. Much of this material is quite
standard, although the relevant results are often scattered through different
sources, and our aim is to provide a unified treatment. The relationship be-
tween the second-order properties of the SDEs on the real line and the circle,
and difference equations on the integer lattice and the regular polygon is, to
our knowledge, novel.

B.1 Fourier Analysis

We follow the treatment given by Kammler [2000]. We consider Fourier analysis
of functions on the real line R, of periodic functions of period l on the circle
Tl, of functions defined on the integer lattice Z, and of functions on PN , the
regular N -polygon, which is a discretization of Tl.

For sufficiently well-behaved functions on R we have

f(x) =
∫ ∞

−∞
f̃(s)e2πisx ds, f̃(s) =

∫ ∞

−∞
f(x)e−2πisx dx. (B.3)

We refer to the equation on the left as the synthesis equation, and the equation
on the right as the analysis equation.

For functions on Tl we obtain the Fourier series representations

f(x) =
∞∑

k=−∞

f̃ [k]e2πikx/l, f̃ [k] =
1
l

∫ l

0

f(x)e−2πikx/l dx, (B.4)

1The ak coefficients in equations (B.1) and (B.2) are not intended to have a close relation-
ship. An approximate relationship might be established through the use of finite-difference
approximations to derivatives.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

B.1 Fourier Analysis 209

where f̃ [k] denotes the coefficient of e2πikx/l in the expansion. We use square
brackets [] to denote that the argument is discrete, so that Xt and X[t] are
equivalent notations.

Similarly for Z we obtain

f [n] =
∫ l

0

f̃(s)e2πisn/l ds, f̃(s) =
1
l

∞∑
n=−∞

f [n]e−2πisn/l. (B.5)

Note that f̃(s) is periodic with period l and so is defined only for 0 ≤ s < l to
avoid aliasing. Often this transform is defined for the special case l = 1 but the
general case emphasizes the duality between equations (B.4) and (B.5).

Finally, for functions on PN we have the discrete Fourier transform

f [n] =
N−1∑
k=0

f̃ [k]e2πikn/N , f̃ [k] =
1
N

N−1∑
n=0

f [n]e−2πikn/N . (B.6)

Note that there are other conventions for Fourier transforms, particularly those
involving ω = 2πs. However, this tends to destroy symmetry between the
analysis and synthesis equations so we use the definitions given above.

In the case of stochastic processes, the most important Fourier relationship
is between the covariance function and the power spectrum; this is known as
the Wiener-Khintchine theorem, see e.g. Chatfield [1989].

B.1.1 Sampling and Periodization

We can obtain relationships between functions and their transforms on R, Tl,
Z, PN through the notions of sampling and periodization.

Definition B.1 h-sampling: Given a function f on R and a spacing parameter h-sampling

h > 0, we construct a corresponding discrete function φ on Z using

φ[n] = f(nh), n ∈ Z. (B.7)
�

Similarly we can discretize a function defined on Tl onto PN , but in this case
we must take h = l/N so that N steps of size h will equal the period l.

Definition B.2 Periodization by summation: Let f(x) be a function on R that periodization by
summationrapidly approaches 0 as x → ±∞. We can sum translates of the function to

produce the l-periodic function

g(x) =
∞∑

m=−∞
f(x−ml), (B.8)

for l > 0. Analogously, when φ is defined on Z and φ[n] rapidly approaches 0
as n→ ±∞ we can construct a function γ on PN by N -summation by setting

γ[n] =
∞∑

m=−∞
φ[n−mN]. (B.9)

�

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

210 Gaussian Markov Processes

Let φ[n] be obtained by h-sampling from f(x), with corresponding Fourier
transforms φ̃(s) and f̃(s). Then we have

φ[n] = f(nh) =
∫ ∞

−∞
f̃(s)e2πisnh ds, (B.10)

φ[n] =
∫ l

0

φ̃(s)e2πisn/l ds. (B.11)

By breaking up the domain of integration in eq. (B.10) we obtain

φ[n] =
∞∑

m=−∞

∫ (m+1)l

ml

f̃(s)e2πisnh ds (B.12)

=
∞∑

m=−∞

∫ l

0

f̃(s′ +ml)e2πinh(s′+ml) ds′, (B.13)

using the change of variable s′ = s −ml. Now set hl = 1 and use e2πinm = 1
for n, m integers to obtain

φ[n] =
∫ l

0

(∞∑
m=−∞

f̃(s+ml)
)
e2πisn/l ds, (B.14)

which implies that

φ̃(s) =
∞∑

m=−∞
f̃(s+ml), (B.15)

with l = 1/h. Alternatively setting l = 1 one obtains φ̃(s) = 1
h

∑∞
m=−∞ f̃(s+m

h).
Similarly if f is defined on Tl and φ[n] = f(nl

N) is obtained by sampling then

φ̃[n] =
∞∑

m=−∞
f̃ [n+mN]. (B.16)

Thus we see that sampling in x-space causes periodization in Fourier space.

Now consider the periodization of a function f(x) with x ∈ R to give the l-
periodic function g(x) ,

∑∞
m=−∞ f(x−ml). Let g̃[k] be the Fourier coefficients

of g(x). We obtain

g̃[k] =
1
l

∫ l

0

g(x)e−2πikx/l dx =
1
l

∫ l

0

∞∑
m=−∞

f(x−ml)e−2πikx/l dx (B.17)

=
1
l

∫ ∞

−∞
f(x)e−2πikx/l dx =

1
l
f̃
(k
l

)
, (B.18)

assuming that f(x) is sufficiently well-behaved that the summation and inte-
gration operations can be exchanged. A similar relationship can be obtained
for the periodization of a function defined on Z. Thus we see that periodization
in x-space gives rise to sampling in Fourier space.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

B.2 Continuous-time Gaussian Markov Processes 211

B.2 Continuous-time Gaussian Markov Processes

We first consider continuous-time Gaussian Markov processes on the real line,
and then relate the covariance function obtained to that for the stationary
solution of the SDE on the circle. Our treatment of continuous-time GMPs on
R follows Papoulis [1991, ch. 10].

B.2.1 Continuous-time GMPs on R

We wish to find the power spectrum and covariance function for the stationary
process corresponding to the SDE given by eq. (B.2). Recall that the covariance
function of a stationary process k(t) and the power spectrum S(s) form a Fourier
transform pair.

The Fourier transform of the stochastic process X(t) is a stochastic process
X̃(s) given by

X̃(s) =
∫ ∞

−∞
X(t)e−2πist dt, X(t) =

∫ ∞

−∞
X̃(s)e2πist ds, (B.19)

where the integrals are interpreted as a mean-square limit. Let ∗ denote complex
conjugation and 〈. . .〉 denote expectation with respect to the stochastic process.
Then for a stationary Gaussian process we have

〈X̃(s1)X̃∗(s2)〉 =
∫ ∞

−∞

∫ ∞

−∞
〈X(t)X∗(t′)〉e−2πis1te2πis2t′ dt dt′ (B.20)

=
∫ ∞

−∞
dt′e−2πi(s1−s2)t

′
∫ ∞

−∞
dτk(τ)e−2πis1τ (B.21)

= S(s1)δ(s1 − s2), (B.22)

using the change of variables τ = t − t′ and the integral representation of
the delta function

∫
e−2πistdt = δ(s). This shows that X̃(s1) and X̃(s2) are

uncorrelated for s1 6= s2, i.e. that the Fourier basis are eigenfunctions of the
differential operator. Also from eq. (B.19) we obtain

X(k)(t) =
∫ ∞

−∞
(2πis)kX̃(s)e2πist ds. (B.23)

Now if we Fourier transform eq. (B.2) we obtain

p∑
k=0

ak(2πis)kX̃(s) = b0Z̃(s), (B.24)

where Z̃(s) denotes the Fourier transform of the white noise. Taking the product
of equation B.24 with its complex conjugate and taking expectations we obtain[p∑

k=0

ak(2πis1)k

][p∑
k=0

ak(−2πis2)k

]
〈X̃(s1)X̃∗(s2)〉 = b20〈Z̃(s1)Z̃∗(s2)〉.

(B.25)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

212 Gaussian Markov Processes

Let A(z) =
∑p

k=0 akz
k. Then using eq. (B.22) and the fact that the power

spectrum of white noise is 1, we obtain

SR(s) =
b20

|A(2πis)|2
. (B.26)

Note that the denominator is a polynomial of order p in s2. The relationship
of stationary solutions of pth-order SDEs to rational spectral densities can be
traced back at least as far as Doob [1944].

Above we have assumed that the process is stationary. However, this de-
pends on the coefficients a0, . . . , ap. To analyze this issue we assume a solution
of the form Xt ∝ eλt when the driving term b0 = 0. This leads to the condition
for stationarity that the roots of the polynomial

∑p
k=0 akλ

k must lie in the left
half plane [Arató, 1982, p. 127].

Example: AR(1) process. In this case we have the SDEAR(1) process

X ′(t) + a0X(t) = b0Z(t), (B.27)

where a0 > 0 for stationarity. This gives rise to the power spectrum

S(s) =
b20

(2πis+ a0)(−2πis+ a0)
=

b20
(2πs)2 + a2

0

. (B.28)

Taking the Fourier transform we obtain

k(t) =
b20
2a0

e−a0|t|. (B.29)

This process is known as the Ornstein-Uhlenbeck (OU) process [Uhlenbeck and
Ornstein, 1930] and was introduced as a mathematical model of the velocity of
a particle undergoing Brownian motion. It can be shown that the OU process
is the unique stationary first-order Gaussian Markov process.

Example: AR(p) process. In general the covariance transform correspondingAR(p) process

to the power spectrum S(s) = ([
∑p

k=0 ak(2πis)k][
∑p

k=0 ak(−2πis)k])−1 can be
quite complicated. For example, Papoulis [1991, p. 326] gives three forms of
the covariance function for the AR(2) process depending on whether a2

1−4a0 is
greater than, equal to or less than 0. However, if the coefficients a0, a1, . . . , ap

are chosen in a particular way then one can obtain

S(s) =
1

(4π2s2 + α2)p
(B.30)

for some α. It can be shown [Stein, 1999, p. 31] that the corresponding covari-
ance function is of the form

∑p−1
k=0 βk|t|ke−α|t| for some coefficients β0, . . . , βp−1.

For p = 1 we have already seen that k(t) = 1
2αe

−α|t| for the OU process. For
p = 2 we obtain k(t) = 1

4α3 e
−α|t|(1+α|t|). These are special cases of the Matérn

class of covariance functions described in section 4.2.1.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

B.2 Continuous-time Gaussian Markov Processes 213

Example: Wiener process. Although our derivations have focussed on stationary Wiener process

Gaussian Markov processes, there are also several important non-stationary
processes. One of the most important is the Wiener process that satisfies the
SDE X ′(t) = Z(t) for t ≥ 0 with the initial condition X(0) = 0. This process
has covariance function k(t, s) = min(t, s). An interesting variant of the Wiener
process known as the Brownian bridge (or tied-down Wiener process) is obtained
by conditioning on the Wiener process passing through X(1) = 0. This has
covariance k(t, s) = min(t, s) − st for 0 ≤ s, t ≤ 1. See e.g. Grimmett and
Stirzaker [1992] for further information on these processes.

Markov processes derived from SDEs of order p are p−1 times MS differen-
tiable. This is easy to see heuristically from eq. (B.2); given that a process gets
rougher the more times it is differentiated, eq. (B.2) tells us that X(p)(t) is like
the white noise process, i.e. not MS continuous. So, for example, the OU process
(and also the Wiener process) are MS continuous but not MS differentiable.

B.2.2 The Solution of the Corresponding SDE on the Cir-
cle

The analogous analysis to that on the real line is carried out on Tl using

X(t) =
∞∑

n=−∞
X̃[n]e2πint/l, X̃[n] =

1
l

∫ l

0

X(t)e−2πint/ldt. (B.31)

As X(t) is assumed stationary we obtain an analogous result to eq. (B.22),
i.e. that the Fourier coefficients are independent

〈X̃[m]X̃∗[n]〉 =
{
S[n] if m = n
0 otherwise. (B.32)

Similarly, the covariance function on the cirle is given by k(t−s) = 〈X(t)X∗(s)〉 =∑∞
n=−∞ S[n]e2πin(t−s)/l. Let ωl = 2π/l. Then plugging in the expression

X(k)(t) =
∑∞

n=−∞(inωl)kX̃[n]einωlt into the SDE eq. (B.2) and equating terms
in [n] we obtain

p∑
k=0

ak(inωl)kX̃[n] = b0Z̃[n]. (B.33)

As in the real-line case we form the product of equation B.33 with its complex
conjugate and take expectations to give

ST[n] =
b20

|A(inωl)|2
. (B.34)

Note that ST[n] is equal to SR
(

n
l

)
, i.e. that it is a sampling of SR at intervals

1/l, where SR(s) is the power spectrum of the continuous process on the real
line given in equation B.26. Let kT(h) denote the covariance function on the

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

214 Gaussian Markov Processes

circle and kR(h) denote the covariance function on the real line for the SDE.
Then using eq. (B.15) we find that

kT(t) =
∞∑

m=−∞
kR(t−ml). (B.35)

Example: 1st-order SDE. On R for the OU process we have kR(t) = b20
2a0

e−a0|t|.1st order SDE

By summing the series (two geometric progressions) we obtain

kT(t) =
b20

2a0(1− e−a0l)

(
e−a0|t| + e−a0(l−|t|)

)
=

b20
2a0

cosh[a0(l
2 − |t|)]

sinh(a0l
2)

(B.36)

for −l ≤ t ≤ l. Eq. (B.36) is also given (up to scaling factors) in Grenander
et al. [1991, eq. 2.15], where it is obtained by a limiting argument from the
discrete-time GMP on Pn, see section B.3.2.

B.3 Discrete-time Gaussian Markov Processes

We first consider discrete-time Gaussian Markov processes on Z, and then re-
late the covariance function obtained to that of the stationary solution of the
difference equation on PN . Chatfield [1989] and Diggle [1990] provide good
coverage of discrete-time ARMA models on Z.

B.3.1 Discrete-time GMPs on Z

Assuming that the process is stationary the covariance function k[i] denotes
〈XtXt+i〉 ∀t ∈ Z. (Note that because of stationarity k[i] = k[−i].)

We first use a Fourier approach to derive the power spectrum and hence the
covariance function of the AR(p) process. Defining a0 = −1, we can rewrite
eq. (B.1) as

∑p
k=0 akXt−k + b0Zt = 0. The Fourier pair for X[t] is

X[t] =
∫ l

0

X̃(s)e2πist/l ds, X̃(s) =
1
l

∞∑
t=−∞

X[t]e−2πist/l. (B.37)

Plugging this into
∑p

k=0 akXt−k + b0Zt = 0 we obtain

X̃(s)
(p∑

k=0

ake
−iωlsk

)
+ b0Z̃(s) = 0, (B.38)

where ωl = 2π/l. As above, taking the product of eq. (B.38) with its complex
conjugate and taking expectations we obtain

SZ(s) =
b20

|A(eiωls)|2
. (B.39)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

B.3 Discrete-time Gaussian Markov Processes 215

Above we have assumed that the process is stationary. However, this de-
pends on the coefficients a0, . . . , ap. To analyze this issue we assume a solution
of the form Xt ∝ zt when the driving term b0 = 0. This leads to the condition
for stationarity that the roots of the polynomial

∑p
k=0 akz

p−k must lie inside
the unit circle. See Hannan [1970, Theorem 5, p. 19] for further details.

As well as deriving the covariance function from the Fourier transform of
the power spectrum it can also be obtained by solving a set of linear equations.
Our first observation is that Xs is independent of Zt for s < t. Multiplying
equation B.1 through by Zt and taking expectations, we obtain 〈XtZt〉 = b0
and 〈Xt−iZt〉 = 0 for i > 0. By multiplying equation B.1 through by Xt−j for
j = 0, 1, . . . and taking expectations we obtain the Yule-Walker equations Yule-Walker equations

k[0] =
p∑

i=1

aik[i] + b20 (B.40)

k[j] =
p∑

i=1

aik[j − i] ∀j > 0. (B.41)

The first p+1 of these equations form a linear system that can be used to solve
for k[0], . . . , k[p] in terms of b0 and a1, . . . , ap, and eq. (B.41) can be used to
obtain k[j] for j > p recursively.

Example: AR(1) process. The simplest example of an AR process is the AR(1) AR(1) process

process defined as Xt = a1Xt−1 + b0Zt. This gives rise to the Yule-Walker
equations

k[0]− a1k[1] = b20, and k[1]− a1k[0] = 0. (B.42)

The linear system for k[0], k[1] can easily be solved to give k[j] = a
|j|
1 σ2

X , where
σ2

X = b20/(1− a2
1) is the variance of the process. Notice that for the process to

be stationary we require |a1| < 1. The corresponding power spectrum obtained
from equation B.39 is

S(s) =
b20

1− 2a1 cos(ωls) + a2
1

. (B.43)

Similarly to the continuous case, the covariance function for the discrete-time
AR(2) process has three different forms depending on a2

1 + 4a2. These are
described in Diggle [1990, Example 3.6].

B.3.2 The Solution of the Corresponding Difference Equa-
tion on PN

We now consider variables X = X0, X1, . . . , XN−1 arranged around the circle
with N ≥ p. By appropriately modifying eq. (B.1) we obtain

Xt =
p∑

k=1

akXmod(t−k,N) + b0Zt. (B.44)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

216 Gaussian Markov Processes

The Zt’s are i.i.d. and ∼ N (0, 1). Thus Z = Z0, Z1, . . . , ZN−1 has density
p(Z) ∝ exp− 1

2

∑N−1
t=0 Z2

t . Equation (B.44) shows that X and Z are related by
a linear transformation and thus

p(X) ∝ exp
(
− 1

2b20

N−1∑
t=0

(
Xt −

p∑
k=1

akXmod(t−k,N)

)2)
. (B.45)

This is an N -dimensional multivariate Gaussian. For an AR(p) process the
inverse covariance matrix has a circulant structure [Davis, 1979] consisting of
a diagonal band (2p + 1) entries wide and appropriate circulant entries in the
corners. Thus p(Xt|X\Xt) = p(Xt|Xmod(t−1,N), . . . , Xmod(t−p,N), Xmod(t+1,N),
. . . , Xmod(t+p,N)), which Geman and Geman [1984] call the “two-sided” Markov
property. Notice that it is the zeros in the inverse covariance matrix that
indicate the conditional independence structure; see also section B.5.

The properties of eq. (B.44) have been studied by a number of authors,
e.g. Whittle [1963] (under the name of circulant processes), Kashyap and Chel-
lappa [1981] (under the name of circular autoregressive models) and Grenander
et al. [1991] (as cyclic Markov process).

As above, we define the Fourier transform pair

X[n] =
N−1∑
m=0

X̃[m]e2πinm/N , X̃[m] =
1
N

N−1∑
n=0

X[n]e−2πinm/N . (B.46)

By similar arguments to those above we obtain

p∑
k=0

akX̃[m](e2πim/N)k + b0Z̃[m] = 0, (B.47)

where a0 = −1, and thus

SP[m] =
b20

|A(e2πim/N)|2
. (B.48)

As in the continuous-time case, we see that SP[m] is obtained by sampling
the power spectrum of the corresponding process on the line, so that SP[m] =
SZ
(

ml
N

)
. Thus using eq. (B.16) we have

kP[n] =
∞∑

m=−∞
kZ[n+mN]. (B.49)

Example: AR(1) process. For this process Xt = a1Xmod(t−1,n) + b0Zt, theAR(1) process

diagonal entries in the inverse covariance are (1 + a2
1)/b

2
0 and the non-zero off-

diagonal entries are −a1/b
2
0.

By summing the covariance function kZ[n] = σ2
Xa

|n|
1 we obtain

kP[n] =
σ2

X

(1− aN
1)

(a|n|1 + a
|N−n|
1) n = 0, . . . , N − 1. (B.50)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

B.4 The Relationship Between Discrete-time and Sampled Continuous-time GMPs 217

We now illustrate this result for N = 3. In this case the covariance matrix has
diagonal entries of σ2

X

(1−a3
1)

(1 + a3
1) and off-diagonal entries of σ2

X

(1−a3
1)

(a1 + a2
1).

The inverse covariance matrix has the structure described above. Multiplying
these two matrices together we do indeed obtain the identity matrix.

B.4 The Relationship Between Discrete-time and
Sampled Continuous-time GMPs

We now consider the relationship between continuous-time and discrete-time
GMPs. In particular we ask the question, is a regular sampling of a continuous-
time AR(p) process a discrete-time AR(p) process? It turns out that the answer
will, in general, be negative. First we define a generalization of AR processes
known as autoregressive moving-average (ARMA) processes.

ARMA processes The AR(p) process defined above is a special case of the
more general ARMA(p, q) process which is defined as

Xt =
p∑

i=1

aiXt−i +
q∑

j=0

bjZt−j . (B.51)

Observe that the AR(p) process is in fact also an ARMA(p, 0) process. A
spectral analysis of equation B.51 similar to that performed in section B.3.1
gives

S(s) =
|B(eiωls)|2

|A(eiωls)|2
, (B.52)

where B(z) =
∑q

j=0 bjz
j . In continuous time a process with a rational spectral

density of the form

S(s) =
|B(2πis)|2

|A(2πis)|2
(B.53)

is known as a ARMA(p, q) process. For this to define a valid covariance function
we require q < p as k(0) =

∫
S(s)ds <∞.

Discrete-time observation of a continuous-time process Let X(t) be
a continuous-time process having covariance function k(t) and power spectrum
S(s). Let Xh be the discrete-time process obtained by sampling X(t) at interval
h, so that Xh[n] = X(nh) for n ∈ Z. Clearly the covariance function of this
process is given by kh[n] = k(nh). By eq. (B.15) this means that

Sh(s) =
∞∑

m=−∞
S(s+

m

h
) (B.54)

where Sh(s) is defined using l = 1/h.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

218 Gaussian Markov Processes

Theorem B.1 Let X be a continuous-time stationary Gaussian process and
Xh be the discretization of this process. If X is an ARMA process then Xh

is also an ARMA process. However, if X is an AR process then Xh is not
necessarily an AR process. �

The proof is given in Ihara [1993, Theorem 2.7.1]. It is easy to see using the
covariance functions given in sections B.2.1 and B.3.1 that the discretization
of a continuous-time AR(1) process is indeed a discrete-time AR(1) process.
However, Ihara shows that, in general, the discretization of a continuous-time
AR(2) process is not a discrete-time AR(2) process.

B.5 Markov Processes in Higher Dimensions

We have concentrated above on the case where t is one-dimensional. In higher
dimensions it is interesting to ask how the Markov property might be general-
ized. Let ∂S be an infinitely differentiable closed surface separating RD into a
bounded part S− and an unbounded part S+. Loosely speaking2 a random field
X(t) is said to be quasi-Markovian if X(t) for t ∈ S− and X(u) for u ∈ S+ are
independent given X(s) for s ∈ ∂S. Wong [1971] showed that the only isotropic
quasi-Markov Gaussian field with a continuous covariance function is the degen-
erate case X(t) = X(0), where X(0) is a Gaussian variate. However, if instead
of conditioning on the values that the field takes on in ∂S, one conditions on
a somewhat larger set, then Gaussian random fields with non-trivial Markov-
type structure can be obtained. For example, random fields with an inverse
power spectrum of the form

∑
k ak1,...,kD

sk1
1 · · · s

kd

d with k>1 =
∑D

j=1 kj ≤ 2p
and C(s · s)p ≤

∣∣∑
k>1=2p ak1,...,kD

sk1
1 · · · s

kd

D

∣∣ for some C > 0 are said to be
pseudo-Markovian of order p. For example, the D-dimensional tensor-product
of the OU process k(t) =

∏D
i=1 e

−αi|ti| is pseudo-Markovian of order D. For
further discussion of Markov properties of random fields see the Appendix in
Adler [1981].

If instead of RD we wish to define a Markov random field (MRF) on a graph-
ical structure (for example the lattice ZD) things become more straightforward.
We follow the presentation in Jordan [2005]. Let G = (X,E) be a graph where
X is a set of nodes that are in one-to-one correspondence with a set of ran-
dom variables, and E be the set of undirected edges of the graph. Let C be
the set of all maximal cliques of G. A potential function ψC(xC) is a function
on the possible realizations xC of the maximal clique XC . Potential functions
are assumed to be (strictly) positive, real-valued functions. The probability
distribution p(x) corresponding to the Markov random field is given by

p(x) =
1
Z

∏
C∈C

ψC(xC), (B.55)

where Z is a normalization factor (known in statistical physics as the partition
function) obtained by summing/integrating

∏
C∈C ψC(xC) over all possible as-

2For a precise formulation of this definition involving σ-fields see Adler [1981, p. 256].

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

B.5 Markov Processes in Higher Dimensions 219

signments of values to the nodes X. Under this definition it is easy to show
that a local Markov property holds, i.e. that for any variable x the conditional
distribution of x given all other variables in X depends only on those variables
that are neighbours of x. A useful reference on Markov random fields is Winkler
[1995].

A simple example of a Gaussian Markov random field has the form

p(x) ∝ exp
(
− α1

∑
i

x2
i − α2

∑
i,j:j∈N(i)

(xi − xj)2
)
, (B.56)

where N(i) denotes the set of neighbours of node xi and α1, α2 > 0. On Z2

one might choose a four-connected neighbourhood, i.e. those nodes to the north,
south, east and west of a given node.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Appendix C

Datasets and Code

The datasets used for experiments in this book and implementations of the
algorithms presented are available for download at the website of the book:

http://www.GaussianProcess.org/gpml

The programs are short stand-alone implementations and not part of a larger
package. They are meant to be simple to understand and modify for a desired
purpose. Some of the programs allow specification of covariance functions from
a selection provided, or to link in user defined covariance code. For some of
the plots, code is provided which produces a similar plot, as this may be a
convenient way of conveying the details.

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Bibliography

Abrahamsen, P. (1997). A Review of Gaussian Random Fields and Correlation Functions. Tech-
nical Report 917, Norwegian Computing Center, Oslo, Norway. http://publications.nr.no/
917 Rapport.pdf. p. 82

Abramowitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions. Dover, New York.
pp. 84, 85

Adams, R. (1975). Sobolev Spaces. Academic Press, New York. p. 134

Adler, R. J. (1981). The Geometry of Random Fields. Wiley, Chichester. pp. 80, 81, 83, 191, 218

Amari, S. (1985). Differential-Geometrical Methods in Statistics. Springer-Verlag, Berlin. p. 102

Ansley, C. F. and Kohn, R. (1985). Estimation, Filtering, and Smoothing in State Space Models with
Incompletely Specified Initial Conditions. Annals of Statistics, 13(4):1286–1316. p. 29

Arató, M. (1982). Linear Stochastic Systems with Constant Coefficients. Springer-Verlag, Berlin. Lecture
Notes in Control and Information Sciences 45. p. 212

Arfken, G. (1985). Mathematical Methods for Physicists. Academic Press, San Diego. pp. xv, 134

Aronszajn, N. (1950). Theory of Reproducing Kernels. Trans. Amer. Math. Soc., 68:337–404.
pp. 129, 130

Bach, F. R. and Jordan, M. I. (2002). Kernel Independent Component Analysis. Journal of Machine
Learning Research, 3(1):1–48. p. 97

Baker, C. T. H. (1977). The Numerical Treatment of Integral Equations. Clarendon Press, Oxford.
pp. 98, 99

Barber, D. and Saad, D. (1996). Does Extra Knowledge Necessarily Improve Generalisation? Neural
Computation, 8:202–214. p. 31

Bartle, R. G. (1995). The Elements of Integration and Lebesgue Measure. Wiley, New York. p. 204

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2003). Convexity, Classification and Risk Bounds.
Technical Report 638, Department of Statistics, University of California, Berkeley. Available from
http://www.stat.berkeley.edu/tech-reports/638.pdf. Accepted for publication in Journal of the
American Statistical Association. p. 157

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer, New York. Second
edition. pp. 22, 35

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

224 Bibliography

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press, Oxford. p. 45

Bishop, C. M., Svensen, M., and Williams, C. K. I. (1998a). Developments of the Generative Topographic
Mapping. Neurocomputing, 21:203–224. p. 196

Bishop, C. M., Svensen, M., and Williams, C. K. I. (1998b). GTM: The Generative Topographic
Mapping. Neural Computation, 10(1):215–234. p. 196

Blake, I. F. and Lindsey, W. C. (1973). Level-Crossing Problems for Random Processes. IEEE Trans
Information Theory, 19(3):295–315. p. 81

Blight, B. J. N. and Ott, L. (1975). A Bayesian approach to model inadequacy for polynomial regression.
Biometrika, 62(1):79–88. p. 28

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, Cambridge,
UK. p. 206

Boyle, P. and Frean, M. (2005). Dependent Gaussian Processes. In Saul, L. K., Weiss, Y., and Bottou,
L., editors, Advances in Neural Information Processing Systems 17, pages 217–224. MIT Press. p. 190

Bracewell, R. N. (1986). The Fourier Transform and Its Applications. McGraw-Hill, Singapore, inter-
national edition. pp. 83, 206

Caruana, R. (1997). Multitask Learning. Machine Learning, 28(1):41–75. p. 115

Chatfield, C. (1989). The Analysis of Time Series: An Introduction. Chapman and Hall, London, 4th
edition. pp. 82, 209, 214

Choi, T. and Schervish, M. J. (2004). Posterior Consistency in Nonparametric Regression Prob-
lems Under Gaussian Process Priors. Technical Report 809, Department of Statistics, CMU.
http://www.stat.cmu.edu/tr/tr809/tr809.html. p. 156

Choudhuri, N., Ghosal, S., and Roy, A. (2005). Nonparametric Binary Regression Using a Gaussian
Process Prior. Unpublished. http://www4.stat.ncsu.edu/∼sghosal/papers.html. p. 156

Chu, W. and Ghahramani, Z. (2005). Gaussian Processes for Ordinal Regression. Journal of Machine
Learning Research, 6:1019–1041. p. 191

Collins, M. and Duffy, N. (2002). Convolution Kernels for Natural Language. In Diettrich, T. G., Becker,
S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14. MIT Press.

p. 101

Collobert, R. and Bengio, S. (2001). SVMTorch: Support Vector Machines for Large-Scale Re-
gression Problems. Journal of Machine Learning Research, 1:143–160. http://www.idiap.ch/
∼bengio/projects/SVMTorch.html. pp. 69, 72

Cornford, D., Nabney, I. T., and Williams, C. K. I. (2002). Modelling Frontal Discontinuities in Wind
Fields. Journal of Nonparameteric Statsitics, 14(1-2):43–58. p. 85

Cox, D. D. (1984). Multivariate Smoothing Spline Functions. SIAM Journal on Numerical Analysis,
21(4):789–813. p. 156

Cox, D. D. and O’Sullivan, F. (1990). Asymptotic Analysis of Penalized Likelihood and Related Esti-
mators. Annals of Statistics, 18(4):1676–1695. p. 156

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Bibliography 225

Craven, P. and Wahba, G. (1979). Smoothing Noisy Data with Spline Functions. Numer. Math., 31:377–
403. p. 112

Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York. pp. 30, 137, 190

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines. Cambridge
University Press. p. 141

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and Kandola, J. (2002). On Kernel-Target Alignment. In
Diettrich, T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing
Systems 14. MIT Press. p. 128

Csató, L. (2002). Gaussian Processes—Iterative Sparse Approximations. PhD thesis, Aston University,
UK. p. 179

Csató, L. and Opper, M. (2002). Sparse On-Line Gaussian Processes. Neural Computation, 14(3):641–
668. pp. 180, 185

Csató, L., Opper, M., and Winther, O. (2002). TAP Gibbs Free Energy, Belief Propagation and Spar-
sity. In Diettrich, T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information
Processing Systems 14, pages 657–663. MIT Press. pp. 180, 185

Daley, R. (1991). Atmospheric Data Analysis. Cambridge University Press, Cambridge, UK. p. 30

David, H. A. (1970). Order Statistics. Wiley, New York. pp. 169, 170

Davis, P. J. (1979). Circulant Matrices. Wiley, New York. p. 216

Dawid, A. P. (1976). Properties of Diagnostic Data Distributions. Biometrics, 32:647–658. p. 34

Dellaportas, P. and Stephens, D. A. (1995). Bayesian Analysis of Errors-in-Variables Regression Models.
Biometrics, 51:1085–1095. p. 192

Devroye, L., Györfi, L., and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition. Springer,
New York. pp. 156, 166

Diaconis, P. and Freedman, D. (1986). On the Consistency of Bayes Estimates. Annals of Statistics,
14(1):1–26. p. 156

Diggle, P. J. (1990). Time Series: A Biostatistical Introduction. Clarendon Press, Oxford. pp. 214, 215

Diggle, P. J., Tawn, J. A., and Moyeed, R. A. (1998). Model-based Geostatistics (with discussion).
Applied Statistics, 47:299–350. p. 191

Doob, J. L. (1944). The Elementary Gaussian Processes. Annals of Mathematical Statistics, 15(3):229–
282. p. 212

Doob, J. L. (1994). Measure Theory. Springer-Verlag, New York. p. 204

Drineas, P. and Mahoney, M. W. (2005). On the Nyström Method for Approximating a Gram Ma-
trix for Improved Kernel-Based Learning. Technical Report YALEU/DCS/TR-1319, Yale University.
http://cs-www.cs.yale.edu/homes/mmahoney. p. 174

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

226 Bibliography

Duchon, J. (1977). Splines Minimizing Rotation-Invariant Semi-norms in Sobolev Spaces. In Schempp,
W. and Zeller, K., editors, Constructive Theory of Functions of Several Variables, pages 85–100.
Springer-Verlag. p. 137

Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis. John Wiley, New York.
p. 146

Edgeworth, F. Y. (1887). On Observations Relating to Several Quantities. Hermathena, 6:279–285.
p. 146

Faul, A. C. and Tipping, M. E. (2002). Analysis of Sparse Bayesian Learning. In Dietterich, T. G.,
Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14,
pages 383–389, Cambridge, Massachussetts. MIT Press. p. 149

Feldman, J. (1958). Equivalence and Perpendicularity of Gaussian Processes. Pacific J. Math., 8:699–
708. Erratum in Pacific J. Math. 9, 1295-1296 (1959). p. 157

Ferrari Trecate, G., Williams, C. K. I., and Opper, M. (1999). Finite-dimensional Approximation of
Gaussian Processes. In Kearns, M. S., Solla, S. A., and Cohn, D. A., editors, Advances in Neural
Information Processing Systems 11, pages 218–224. MIT Press. p. 152

Fine, S. and Scheinberg, K. (2002). Efficient SVM Training Using Low-Rank Kernel Representations.
Journal of Machine Learning Research, 2(2):243–264. pp. 47, 174

Fowlkes, C., Belongie, S., and Malik, J. (2001). Efficient Spatiotemporal Grouping Using the Nyström
Method. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2001. p. 172

Freedman, D. (1999). On the Bernstein-Von Mises Theorem with Infinite-Dimensional Parameters.
Annals of Statistics, 27(4):1119–1140. p. 156

Frieze, A., Kannan, R., and Vempala, S. (1998). Fast Monte-Carlo Algorithms for Finding Low-Rank
Approximations. In 39th Conference on the Foundations of Computer Science, pages 370–378. p. 174

Geisser, S. and Eddy, W. F. (1979). A Predictive Approach to Model Selection. Journal of the Americal
Statistical Association, 74(365):153–160. p. 117

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restora-
tion of Images. IEEE Trans. Pattern Analysis and Machine Intellligence, 6(6):721–741. p. 216

Gibbs, M. N. (1997). Bayesian Gaussian Processes for Regression and Classification. PhD thesis,
Department of Physics, University of Cambridge. p. 93

Gibbs, M. N. and MacKay, D. J. C. (1997). Efficient Implementation of Gaussian Processes. Unpub-
lished manuscript. Cavendish Laboratory, Cambridge, UK. http://www.inference.phy.cam.ac.uk/
mackay/BayesGP.html. p. 181

Gibbs, M. N. and MacKay, D. J. C. (2000). Variational Gaussian Process Classifiers. IEEE Transactions
on Neural Networks, 11(6):1458–1464. p. 41

Gihman, I. I. and Skorohod, A. V. (1974). The Theory of Stochastic Processes, volume 1. Springer
Verlag, Berlin. p. 82

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Bibliography 227

Girard, A., Rasmussen, C. E., Quiñonero-Candela, J., and Murray-Smith, R. (2003). Gaussian Process
Priors With Uncertain Inputs: Application to Multiple-Step Ahead Time Series Forecasting. In Becker,
S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing Systems 15.
MIT Press. p. 192

Girosi, F. (1991). Models of Noise and Robust Estimates. Technical Report AI Memo 1287, MIT AI
Laboratory. p. 146

Girosi, F., Jones, M., and Poggio, T. (1995). Regularization Theory and Neural Networks Architectures.
Neural Computation, 7(2):219–269. p. 25

Goldberg, P. W., Williams, C. K. I., and Bishop, C. M. (1998). Regression with Input-dependent Noise:
A Gaussian Process Treatment. In Jordan, M. I., Kearns, M. J., and Solla, S. A., editors, Advances
in Neural Information Processing Systems 10. MIT Press, Cambridge, MA. p. 191

Golub, G. H. and Van Loan, C. F. (1989). Matrix Computations. Johns Hopkins University Press,
Baltimore. Second edition. pp. 172, 173, 174, 181, 202

Gradshteyn, I. S. and Ryzhik, I. M. (1980). Tables of Integrals, Series and Products. Academic Press.
Corrected and enlarged edition prepared by A. Jeffrey. pp. 98, 103

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Models.
Chapman and Hall, London. p. 138

Grenander, U., Chow, Y., and Keenan, D. M. (1991). Hands: A Pattern Theoretic Study of Biological
Shapes. Springer-Verlag, New York. pp. 214, 216

Grimmett, G. R. and Stirzaker, D. R. (1992). Probability and Random Processes. Oxford University
Press, Oxford, England, second edition. pp. 94, 213

Grünwald, P. D. and Langford, J. (2004). Suboptimal Behaviour of Bayes and MDL in Classification
Under Misspecification. In Proc. Seventeenth Annual Conference on Computational Learning Theory
(COLT 2004). p. 156

Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. (2002). A Distribution-Free Theory of Nonparametric
Regression. Springer, New York. p. 156

Hajek, J. (1958). On a Property of Normal Distributions of Any Stochastic Process (In Russian).
Czechoslovak Math. J., 8:610–618. Translated in Selected Trans. Math. Statist. Probab. 1 245-252
(1961). Also available in Collected Works of Jaroslav Hajek, eds. M. Hušková, R. Beran, V. Dupač,
Wiley, (1998). p. 157

Hand, D. J., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. MIT Press. p. 100

Hannan, E. J. (1970). Multiple Time Series. Wiley, New York. p. 215

Hansen, L. K., Liisberg, C., and Salamon, P. (1997). The Error-Reject Tradeoff. Open Sys. & Information
Dyn., 4:159–184. p. 36

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall. pp. 24, 25, 95

Haussler, D. (1999). Convolution Kernels on Discrete Structures. Technical Report UCSC-CRL-99-10,
Dept of Computer Science, University of California at Santa Cruz. p. 101

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

228 Bibliography

Hawkins, D. L. (1989). Some Practical Problems in Implementing a Certain Sieve Estimator of the
Gaussian Mean Function. Communications in Statistics—Simulation and Computation, 18(2):481–
500. p. 97

Hoerl, A. E. and Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal
Problems. Technometrics, 12(1):55–67. p. 11

Hornik, K. (1993). Some New Results on Neural Network Approximation. Neural Networks, 6(8):1069–
1072. p. 90

Ihara, S. (1993). Information Theory for Continuous Systems. World Scientific, Singapore. p. 218

Jaakkola, T. S., Diekhans, M., and Haussler, D. (2000). A Discriminative Framework for Detecting
Remote Protein Homologies. Journal of Computational Biology, 7:95–114. pp. 101, 102, 104

Jaakkola, T. S. and Haussler, D. (1999). Probabilistic Kernel Regression Models. In Heckerman, D. and
Whittaker, J., editors, Workshop on Artificial Intelligence and Statistics 7. Morgan Kaufmann. p. 41

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive Mixtures of Local
Experts. Neural Computation, 3:79–87. p. 192

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous Univariate Distributions volume 2.
John Wiley and Sons, New York, second edition. p. 45

Jones, D. R. (2001). A Taxonomy of Global Optimization Methods Based on Response Surfaces. J.
Global Optimization, 21:345–383. p. 193

Jordan, M. I. (2005). An Introduction to Probabilistic Graphical Models. Draft book. p. 218

Journel, A. G. and Huijbregts, C. J. (1978). Mining Geostatistics. Academic Press. p. 30

Kailath, T. (1971). RKHS Approach to Detection and Estimation Problems—Part I: Deterministic
Signals in Gaussian Noise. IEEE Trans. Information Theory, 17(5):530–549. p. 131

Kammler, D. W. (2000). A First Course in Fourier Analysis. Prentice-Hall, Upper Saddle River, NJ.
p. 208

Kashyap, R. L. and Chellappa, R. (1981). Stochastic Models for Closed Boundary Analysis: Represen-
tation and Reconstruction. IEEE Trans. on Information Theory, 27(5):627–637. p. 216

Keeling, C. D. and Whorf, T. P. (2004). Atmospheric CO2 Records from Sites in the SIO Air Sampling
Network. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis
Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A. p. 119

Kent, J. T. and Mardia, K. V. (1994). The Link Between Kriging and Thin-plate Splines. In Kelly,
F. P., editor, Probability, Statsitics and Optimization, pages 325–339. Wiley. p. 137

Kimeldorf, G. and Wahba, G. (1970). A Correspondence between Bayesian Estimation of Stochastic
Processes and Smoothing by Splines. Annals of Mathematical Statistics, 41:495–502. p. 136

Kimeldorf, G. and Wahba, G. (1971). Some Results on Tchebycheffian Spline Functions. J. Mathematical
Analysis and Applications, 33(1):82–95. p. 132

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Bibliography 229

Kohn, R. and Ansley, C. F. (1987). A New Algorithm for Spline Smoothing based on Smoothing a
Stochastic Process. SIAM J. Sci. Stat. Comput., 8(1):33–48. p. 141

Kolmogorov, A. N. (1941). Interpolation und Extrapolation von stationären zufäligen Folgen. Izv. Akad.
Nauk SSSR, 5:3–14. p. 29

König, H. (1986). Eigenvalue Distribution of Compact Operators. Birkhäuser. p. 96

Kullback, S. (1959). Information Theory and Statistics. Dover, New York. pp. 158, 203

Kuss, M. and Rasmussen, C. E. (2005). Assessing Approximations for Gaussian Process Classification.
In Weiss, Y., Schölkopf, B., and Platt, J., editors, Advances in Neural Information Processing Systems
18. MIT Press. pp. 72, 73

Lanckriet, G. R. G., Cristianini, N., Bartlett, P. L., El Ghaoui, L., and Jordan, M. I. (2004). Learning the
Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Research, 5(1):27–72.

p. 128

Lauritzen, S. L. (1981). Time Series Analysis in 1880: A Discussion of Contributions Made by
T. N. Thiele. International Statistical Review, 49:319–333. p. 29

Lawrence, N. (2004). Gaussian Process Latent Variable Models for Visualization of High Dimensional
Data. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural Information Processing
Systems 16, pages 329–336. MIT Press. p. 196

Lawrence, N., Seeger, M., and Herbrich, R. (2003). Fast Sparse Gaussian Process Methods: The Infor-
mative Vector Machine. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural
Information Processing Systems 15, pages 625–632. MIT Press. pp. 178, 185

Leslie, C., Eskin, E., Weston, J., and Stafford Noble, W. (2003). Mismatch String Kernels for SVM
Protein Classification. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural
Information Processing Systems 15. MIT Press. pp. 100, 101, 104

Lin, X., Wahba, G., Xiang, D., Gao, F., Klein, R., and Klein, B. (2000). Smoothing Spline ANOVA
Models for Large Data Sets With Bernoulli Observations and the Randomized GACV. Annals of
Statistics, 28:1570–1600. p. 185

Lindley, D. V. (1985). Making Decisions. John Wiley and Sons, London, UK, second edition. p. 111

Lodhi, H., Shawe-Taylor, J., Cristianini, N., and Watkins, C. J. C. H. (2001). Text Classification using
String Kernels. In Leen, T. K., Diettrich, T. G., and Tresp, V., editors, Advances in Neural Information
Processing Systems 13. MIT Press. p. 101

Luo, Z. and Wahba, G. (1997). Hybrid Adaptive Splines. J. Amer. Statist. Assoc., 92:107–116. p. 176

MacKay, D. J. C. (1992a). A Practical Bayesian Framework for Backpropagation Networks. Neural
Computation, 4(3):448–472. pp. 109, 166, 167

MacKay, D. J. C. (1992b). Bayesian Interpolation. Neural Computation, 4(3):415–447. pp. xiii, xvi, 109

MacKay, D. J. C. (1992c). Information-Based Objective Functions for Active Data Selection. Neural
Computation, 4(4):590–604. p. 178

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

230 Bibliography

MacKay, D. J. C. (1992d). The Evidence Framework Applied to Classification Networks. Neural Com-
putation, 4(5):720–736. p. 45

MacKay, D. J. C. (1998). Introduction to Gaussian Processes. In Bishop, C. M., editor, Neural Networks
and Machine Learning. Springer-Verlag. pp. 84, 92

MacKay, D. J. C. (1999). Comparison of Approximate Methods for Handling Hyperparameters. Neural
Computation, 11(5):1035–1068. p. 110

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge Univer-
sity Press, Cambridge, UK. pp. xiv, 167

Malzahn, D. and Opper, M. (2002). A Variational Approach to Learning Curves. In Diettrich, T. G.,
Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14. MIT
Press. p. 161

Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. W. H. Freeman, San Francisco. p. 137

Mardia, K. V. and Marshall, R. J. (1984). Maximum Likelihood Estimation for Models of Residual
Covariance in Spatial Regression. Biometrika, 71(1):135–146. p. 115

Matérn, B. (1960). Spatial Variation. Meddelanden fr̊an Statens Skogsforskningsinstitut, 49, No.5.
Almänna Förlaget, Stockholm. Second edition (1986), Springer-Verlag, Berlin. pp. 85, 87, 89

Matheron, G. (1973). The Intrinsic Random Functions and Their Applications. Advances in Applied
Probability, 5:439–468. p. 30

Maxwell, J. C. (1850). Letter to Lewis Campbell; reproduced in L. Campbell and W. Garrett, The Life
of James Clerk Maxwell, Macmillan, 1881. p. v

McAllester, D. (2003). PAC-Bayesian Stochastic Model Selection. Machine Learning, 51(1):5–21. p. 164

McCullagh, P. and Nelder, J. (1983). Generalized Linear Models. Chapman and Hall. pp. 37, 38, 138

Meinguet, J. (1979). Multivariate Interpolation at Arbitrary Points Made Simple. Journal of Applied
Mathematics and Physics (ZAMP), 30:292–304. p. 137

Meir, R. and Zhang, T. (2003). Generalization Error Bounds for Bayesian Mixture Algorithms. Journal
of Machine Learning Research, 4(5):839–860. p. 164

Micchelli, C. A. and Pontil, M. (2005). Kernels for Multi-task Learning. In Saul, L. K., Weiss, Y.,
and Bottou, L., editors, Advances in Neural Information Processing Systems 17, pages 921–928. MIT
Press. p. 190

Micchelli, C. A. and Wahba, G. (1981). Design Problems for Optimal Surface Interpolation. In Ziegler,
Z., editor, Approximation Theory and Applications, pages 329–348. Academic Press. p. 161

Minka, T. P. (2001). A Family of Algorithms for Approximate Bayesian Inference. PhD thesis, Mas-
sachusetts Institute of Technology. pp. 41, 52

Minka, T. P. (2003). A Comparison of Numerical Optimizers for Logistic Regression.
http://research.microsoft.com/∼minka/papers/logreg. p. 38

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Bibliography 231

Minka, T. P. and Picard, R. W. (1999). Learning How to Learn is Learning With Point Sets.
http://research.microsoft.com/∼minka/papers/point-sets.html. p. 116

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, New York. pp. 2, 165

Murray-Smith, R. and Girard, A. (2001). Gaussian Process priors with ARMA noise models. In
Irish Signals and Systems Conference, pages 147–153, Maynooth. http://www.dcs.gla.ac.uk/∼rod/
publications/MurGir01.pdf. p. 191

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer, New York. Lecture Notes in
Statistics 118. pp. xiii, 30, 90, 91, 106, 166, 167

Neal, R. M. (1997). Monte Carlo Implementation of Gaussian Process Models for Bayesian Regres-
sion and Classification. Technical Report 9702, Department of Statistics, University of Toronto.
http://www.cs.toronto.edu/∼radford. p. 191

Neal, R. M. (1999). Regression and Classification using Gaussian Process Priors. In Bernardo, J. M.,
Berger, J. O., Dawid, A. P., and Smith, A. F. M., editors, Bayesian Statistics 6, pages 475–501. Oxford
University Press. (with discussion). pp. 41, 47

Neal, R. M. (2001). Annealed Importance Sampling. Statistics and Computing, 11:125–139. p. 72

Neumaier, A. (2005). Introduction to Global Optimization. http://www.mat.univie.ac.at/∼neum/
glopt/intro.html. p. 193

O’Hagan, A. (1978). Curve Fitting and Optimal Design for Prediction. Journal of the Royal Statistical
Society B, 40:1–42. (with discussion). pp. 28, 30, 94

O’Hagan, A. (1991). Bayes-Hermite Quadrature. Journal of Statistical Planning and Inference, 29:245–
260. pp. 193, 194

O’Hagan, A., Kennedy, M. C., and Oakley, J. E. (1999). Uncertainty Analysis and other Inference Tools
for Complex Computer Codes. In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M.,
editors, Bayesian Statistics 6, pages 503–524. Oxford University Press. (with discussion). p. 194

Øksendal, B. (1985). Stochastic Differential Equations. Springer-Verlag, Berlin. p. 208

Opper, M. and Vivarelli, F. (1999). General Bounds on Bayes Errors for Regression with Gaussian
Processes. In Kearns, M. S., Solla, S. A., and Cohn, D. A., editors, Advances in Neural Information
Processing Systems 11, pages 302–308. MIT Press. p. 160

Opper, M. and Winther, O. (2000). Gaussian Processes for Classification: Mean-Field Algorithms.
Neural Computation, 12(11):2655–2684. pp. 41, 44, 52, 127, 128

O’Sullivan, F., Yandell, B. S., and Raynor, W. J. (1986). Automatic Smoothing of Regression Functions
in Generalized Linear Models. Journal of the American Statistical Association, 81:96–103. pp. 132, 138

Paciorek, C. and Schervish, M. J. (2004). Nonstationary Covariance Functions for Gaussian Process Re-
gression. In Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural Information Processing
Systems 16. MIT Press. pp. 93, 94

Papoulis, A. (1991). Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York.
Third Edition. pp. 79, 153, 154, 191, 211, 212

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

232 Bibliography

Plaskota, L. (1996). Noisy Information and Computational Complexity. Cambridge University Press,
Cambridge. pp. 161, 169

Plate, T. A. (1999). Accuarcy versus Interpretability in Flexible Modeling: Implementing a Tradeoff
using Gaussian Process Models. Behaviourmetrika, 26(1):29–50. p. 95

Platt, J. C. (1999). Fast Training of Support Vector Machines Using Sequential Minimal Optimization.
In Schölkopf, B., Burges, C. J. C., and Smola, A. J., editors, Advances in Kernel Methods, pages
185–208. MIT Press. p. 144

Platt, J. C. (2000). Probabilities for SV Machines. In Smola, A., Bartlett, P., Schölkopf, B.,
and Schuurmans, D., editors, Advances in Large Margin Classifiers, pages 61–74. MIT Press.

pp. 69, 70, 145, 147, 148

Poggio, T. and Girosi, F. (1990). Networks for Approximation and Learning. Proceedings of IEEE,
78:1481–1497. pp. 89, 133, 134, 135, 147, 176

Poggio, T., Voorhees, H., and Yuille, A. (1985). A Regularized Solution to Edge Detection. Technical
Report AI Memo 833, MIT AI Laboratory. p. 154

Pontil, M., Mukherjee, S., and Girosi, F. (1998). On the Noise Model of Support Vector Machine
Regression. Technical Report AI Memo 1651, MIT AI Laboratory. p. 146

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C.
Cambridge University Press, Second edition. pp. 96, 99, 201

Quiñonero-Candela, J. (2004). Learning with Uncertainty—Gaussian Processes and Relevance Vector
Machines. PhD thesis, Informatics and Mathematical Modelling, Technical Univeristy of Denmark.

p. 177

Rasmussen, C. E. (1996). Evaluation of Gaussian Processes and Other Methods for Non-linear Re-
gression. PhD thesis, Dept. of Computer Science, University of Toronto. http://www.kyb.mpg.de/
publications/pss/ps2304.ps. p. 30

Rasmussen, C. E. (2003). Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian
Integrals. In Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A.
F. M., and West, M., editors, Bayesian Statistics 7, pages 651–659. Oxford University Press. p. 193

Rasmussen, C. E. and Ghahramani, Z. (2001). Occam’s Razor. In Leen, T., Dietterich, T. G., and Tresp,
V., editors, Advances in Neural Information Processing Systems 13, pages 294–300. MIT Press. p. 110

Rasmussen, C. E. and Ghahramani, Z. (2002). Infinite Mixtures of Gaussian Process Experts. In
Diettrich, T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing
Systems 14. MIT Press. p. 192

Rasmussen, C. E. and Ghahramani, Z. (2003). Bayesian Monte Carlo. In Suzanna Becker, S. T. and
Obermayer, K., editors, Advances in Neural Information Processing Systems 15, pages 489–496. MIT
Press. p. 193

Rasmussen, C. E. and Quiñonero-Candela, J. (2005). Healing the Relevance Vector Machine through
Augmentation. In Proc. 22nd International Conference on Machine Learning. pp. 150, 176

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Bibliography 233

Rifkin, R. and Klautau, A. (2004). In Defense of One-Vs-All Classification. Journal of Machine Learning
Research, 5:101–141. pp. 146, 147

Ripley, B. (1981). Spatial Statistics. Wiley, New York. p. 30

Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge,
UK. p. 35

Ritter, K. (2000). Average-Case Analysis of Numerical Problems. Springer Verlag. pp. 159, 161, 169, 193

Ritter, K., Wasilkowski, G. W., and Woźniakowski, H. (1995). Multivariate Integration and Approxima-
tion of Random Fields Satisfying Sacks-Ylvisaker Conditions. Annals of Applied Probability, 5:518–540.

p. 97

Rousseeuw, P. J. (1984). Least Median of Squares Regression. Journal of the American Statistical
Association, 79:871–880. p. 146

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and Analysis of Computer
Experiments. Statistical Science, 4(4):409–435. pp. 16, 30

Saitoh, S. (1988). Theory of Reproducing Kernels and its Applications. Longman, Harlow, England.
p. 129

Salton, G. and Buckley, C. (1988). Term-weighting Approaches in Automatic Text Retrieval. Information
Processing and Management, 24:513–523. p. 100

Sampson, P. D. and Guttorp, P. (1992). Nonparametric Estimation of Nonstationary Covariance Struc-
ture. Journal of the American Statistical Association, 87:108–119. p. 92

Santner, T. J., Williams, B. J., and Notz, W. (2003). The Design and Analysis of Computer Experiments.
Springer, New York. p. 30

Saunders, C., Gammerman, A., and Vovk, V. (1998). Ridge Regression Learning Algorithm in Dual
Variables. In Shavlik, J., editor, Proceedings of the Fifteenth International Conference on Machine
Learning (ICML 1998). Morgan Kaufmann. p. 30

Saunders, C., Shawe-Taylor, J., and Vinokourov, A. (2003). String Kernels, Fisher Kernels and Finite
State Automata. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information
Processing Systems 15. MIT Press. p. 101

Schoenberg, I. J. (1938). Metric Spaces and Positive Definite Functions. Trans. American Mathematical
Society, 44(3):522–536. p. 86

Schoenberg, I. J. (1964). Spline Functions and the Problem of Graduation. Proc. Nat. Acad. Sci. USA,
52:947–950. pp. 132, 138

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press.
pp. xvi, 73, 89, 90, 91, 129, 130, 133, 141, 144, 147, 173, 188, 195, 196

Schölkopf, B., Smola, A. J., and Müller, K.-R. (1998). Nonlinear Component Analysis as a Kernel
Eigenvalue Problem. Neural Computation, 10:1299–1319. p. 99

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

234 Bibliography

Schwaighofer, A. and Tresp, V. (2003). Transductive and Inductive Methods for Approximate Gaus-
sian Process Regression. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural
Information Processing Systems 15. MIT Press. pp. 181, 184

Scott, D. W. (1992). Multivariate Density Estimation. Wiley, New York. p. 25

Seeger, M. (2000). Bayesian Model Selection for Support Vector Machines, Gaussian Processes and
Other Kernel Classifiers. In Solla, S. A., Leen, T. K., and Müller, K.-R., editors, Advances in Neural
Information Processing Systems 12. MIT Press, Cambridge, MA. pp. 41, 54, 145

Seeger, M. (2002). PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification.
Journal of Machine Learning Research, 3:322–269. pp. 161, 164, 165

Seeger, M. (2003). Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error
Bounds and Sparse Approximations. PhD thesis, School of Informatics, University of Edinburgh.
http://www.cs.berkeley.edu/∼mseeger. pp. 46, 145, 161, 162, 163, 179, 180, 186

Seeger, M. (2005). Expectation Propagation for Exponential Families. http://www.cs.berkeley.edu/
∼mseeger/papers/epexpfam.ps.gz. p. 127

Seeger, M. and Jordan, M. I. (2004). Sparse Gaussian Process Classification With Multiple Classes.
Technical Report TR 661, Department of Statistics, University of California at Berkeley. p. 50

Seeger, M., Williams, C. K. I., and Lawrence, N. (2003). Fast Forward Selection to Speed Up Sparse
Gaussian Process Regression. In Bishop, C. and Frey, B. J., editors, Proceedings of the Ninth In-
ternational Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and
Statistics. pp. 178, 180

Shawe-Taylor, J. and Williams, C. K. I. (2003). The Stability of Kernel Principal Components Analysis
and its Relation to the Process Eigenspectrum. In Becker, S., Thrun, S., and Obermayer, K., editors,
Advances in Neural Information Processing Systems 15. MIT Press. p. 99

Shepp, L. A. (1966). Radon-Nikodym Derivatives of Gaussian Measures. Annals of Mathematical Statis-
tics, 37(2):321–354. p. 139

Silverman, B. W. (1978). Density Ratios, Empirical Likelihood and Cot Death. Applied Statistics,
27(1):26–33. p. 138

Silverman, B. W. (1984). Spline Smoothing: The Equivalent Variable Kernel Method. Annals of
Statistics, 12(3):898–916. pp. 25, 153, 154

Silverman, B. W. (1985). Some Aspects of the Spline Smoothing Approach to Non-parametric Regression
Curve Fitting (with discussion). J. Roy. Stat. Soc. B, 47(1):1–52. pp. 170, 175

Simard, P., Victorri, B., Le Cun, Y., and Denker, J. (1992). Tangent Prop—A Formalism for Specifying
Selected Invariances in an Adaptive Network. In Moody, J. E., Hanson, S. J., and Lippmann, R. P.,
editors, Advances in Neural Information Processing Systems 4, pages 895–903. Morgan Kaufmann.

pp. 73, 195

Smola, A. J. and Bartlett, P. L. (2001). Sparse Greedy Gaussian Process Regression. In Leen, T. K.,
Diettrich, T. G., and Tresp, V., editors, Advances in Neural Information Processing Systems 13, pages
619–625. MIT Press. p. 176

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Bibliography 235

Smola, A. J. and Schölkopf, B. (2000). Sparse Greedy Matrix Approximation for Machine Learning. In
Proceedings of the Seventeenth International Conference on Machine Learning. Morgan Kaufmann.

pp. 173, 174

Solak, E., Murray-Smith, R., Leithead, W. E., Leith, D., and Rasmussen, C. E. (2003). Derivative
Observations in Gaussian Process Models of Dynamic Systems. In Becker, S., S. T. and Obermayer,
K., editors, Advances in Neural Information Processing Systems 15, pages 1033–1040. MIT Press.

p. 191

Sollich, P. (1999). Learning Curves for Gaussian Processes. In Kearns, M. S., Solla, S. A., and Cohn,
D. A., editors, Neural Information Processing Systems, Vol. 11. MIT Press. pp. 160, 161

Sollich, P. (2002). Bayesian Methods for Support Vector Machines: Evidence and Predictive Class
Probabilities. Machine Learning, 46:21–52. pp. 145, 150, 161

Sollich, P. and Williams, C. K. I. (2005). Using the Equivalent Kernel to Understand Gaussian Process
Regression. In Saul, L. K., Weiss, Y., and Bottou, L., editors, Advances in Neural Information
Processing Systems 17. MIT Press. p. 154

Stein, M. L. (1991). A Kernel Approximation to the Kriging Predictor of a Spatial Process. Ann. Inst.
Statist. Math, 43(1):61–75. p. 154

Stein, M. L. (1999). Interpolation of Spatial Data. Springer-Verlag, New York.
pp. 82, 83, 85, 86, 87, 115, 137, 157, 158, 161, 212

Steinwart, I. (2005). Consistency of Support Vector Machines and Other Regularized Kernel Classifiers.
IEEE Trans. on Information Theory, 51(1):128–142. p. 157

Stitson, M. O., Gammerman, A., Vapnik, V. N., Vovk, V., Watkins, C. J. C. H., and Weston, J. (1999).
Support Vector Regression with ANOVA Decomposition Kernels. In Schölkopf, B., Burges, C. J. C.,
and Smola, A. J., editors, Advances in Kernel Methods. MIT Press. p. 95

Sundararajan, S. and Keerthi, S. S. (2001). Predictive Approaches for Choosing Hyperparameters in
Gaussian Processes. Neural Computation, 13:1103–1118. p. 117

Suykens, J. A. K. and Vanderwalle, J. (1999). Least Squares Support Vector Machines. Neural Processing
Letters, 9:293–300. p. 147

Szeliski, R. (1987). Regularization uses Fractal Priors. In Proceedings of the 6th National Conference
on Artificial Intelligence (AAAI-87). pp. 135, 137

Teh, Y. W., Seeger, M., and Jordan, M. I. (2005). Semiparametric Latent Factor Models. In Cowell,
R. G. and Ghahramani, Z., editors, Proceedings of Tenth International Workshop on Artificial Inte
lligence and Statistics, pages 333–340. Society for Artificial Intelligence and Statistics. p. 190

Thomas-Agnan, C. (1996). Computing a Family of Reproducing Kernels for Statistical Applications.
Numerical Algorithms, 13:21–32. p. 154

Thompson, P. D. (1956). Optimum Smoothing of Two-Dimensional Fields. Tellus, 8:384–393. p. 30

Tikhonov, A. N. (1963). Solution of Incorrectly Formulated Problems and the Regularization Method.
Soviet. Math. Dokl., 5:1035–1038. p. 133

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

236 Bibliography

Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of Ill-posed Problems. W. H. Winston, Washington,
D.C. p. 133

Tipping, M. E. (2001). Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine
Learning Research, 1:211–244. p. 149

Tipping, M. E. and Faul, A. C. (2003). Fast Marginal Likelihood Maximisation for Sparse Bayesian
Models. In Bishop, C. M. and Frey, B. J., editors, Proceedings of Ninth International Workshop on
Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics. p. 149

Tresp, V. (2000). A Bayesian Committee Machine. Neural Computation, 12(11):2719–2741.
pp. 180, 181, 185, 187

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., and Müller, K.-R. (2002). A New Discriminative
Kernel from Probabilistic Models. Neural Computation, 14(10):2397–2414. p. 102

Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the Theory of Brownian Motion. Phys. Rev., 36:823–841.
pp. 86, 212

Valiant, L. G. (1984). A Theory of the Learnable. Communications of the ACM, 27(11):1134–1142.
p. 161

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer Verlag, New York.
pp. 36, 141, 181

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley and Sons. p. 140

Vijayakumar, S., D’Souza, A., and Schaal, S. (2005). Incremental Online Learning in High Dimensions.
Accepted for publication in Neural Computation. pp. 22, 24

Vijayakumar, S., D’Souza, A., Shibata, T., Conradt, J., and Schaal, S. (2002). Statistical Learning for
Humanoid Robots. Autonomous Robot, 12(1):55–69. p. 22

Vijayakumar, S. and Schaal, S. (2000). LWPR: An O(n) Algorithm for Incremental Real Time Learning
in High Dimensional Space. In Proc. of the Seventeenth International Conference on Machine Learning
(ICML 2000), pages 1079–1086. p. 22

Vishwanathan, S. V. N. and Smola, A. J. (2003). Fast Kernels for String and Tree Matching. In Becker,
S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing Systems 15.
MIT Press. p. 101

Vivarelli, F. and Williams, C. K. I. (1999). Discovering Hidden Features with Gaussian Processes
Regression. In Kearns, M. S., Solla, S. A., and Cohn, D. A., editors, Advances in Neural Information
Processing Systems 11. MIT Press. p. 89

von Mises, R. (1964). Mathematical Theory of Probability and Statistics. Academic Press. p. 200

Wahba, G. (1978). Improper Priors, Spline Smoothing and the Problem of Guarding Against Model
Errors in Regression. Journal of the Royal Statistical Society B, 40(3):364–372. p. 139

Wahba, G. (1985). A Comparison of GCV and GML for Choosing the Smoothing Parameter in the
Generalized Spline Smoothing Problem. Annals of Statistics, 13:1378–1402. p. 29

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Bibliography 237

Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, Philadelphia, PA. CBMS-NSF Regional Conference series in applied mathematics.

pp. 95, 112, 117, 118, 129, 131, 137, 138, 157, 176

Wahba, G., Johnson, D. R., Gao, F., and Gong, J. (1995). Adaptive Tuning of Numerical Weather
Prediction Models: Randomized GCV in Three-and Four-Dimensional Data Assimilation. Monthly
Weather Review, 123:3358–3369. p. 181

Watkins, C. J. C. H. (1999). Dynamic Alignment Kernels. Technical Report CSD-TR-98-11, Dept of
Computer Science, Royal Holloway, University of London. p. 101

Watkins, C. J. C. H. (2000). Dynamic Alignment Kernels. In Smola, A. J., Bartlett, P. L., and Schölkopf,
B., editors, Advances in Large Margin Classifiers, pages 39–50. MIT Press, Cambridge, MA. p. 100

Wegman, E. J. (1982). Reproducing Kernel Hilbert Spaces. In Kotz, S. and Johnson, N. L., editors,
Encyclopedia of Statistical Sciences, volume 8, pages 81–84. Wiley, New York. pp. 129, 130

Weinert, H. L., editor (1982). Reproducing Kernel Hilbert Spaces. Hutchinson Ross, Stroudsburg,
Pennsylvania. p. 129

Wendland, H. (2005). Scattered Data Approximation. Cambridge Monographs on Applied and Compu-
tational Mathematics. Cambridge University Press. p. 88

Whittle, P. (1963). Prediction and Regulation by Linear Least-square Methods. English Universities
Press. pp. 30, 216

Widom, H. (1963). Asymptotic Behavior of the Eigenvalues of Certain Integral Equations. Trans. of the
American Mathematical Society, 109(2):278–295. p. 97

Widom, H. (1964). Asymptotic Behavior of the Eigenvalues of Certain Integral Equations II. Archive
for Rational Mechanics and Analysis, 17:215–229. p. 97

Wiener, N. (1949). Extrapolation, Interpolation and Smoothing of Stationary Time Series. MIT Press,
Cambridge, Mass. p. 29

Williams, C. K. I. (1998). Computation with Infinite Neural Networks. Neural Computation, 10(5):1203–
1216. p. 91

Williams, C. K. I. and Barber, D. (1998). Bayesian Classification with Gaussian Processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–1351. pp. 41, 45, 48, 49

Williams, C. K. I. and Rasmussen, C. E. (1996). Gaussian Processes for Regression. In Touretzky, D. S.,
Mozer, M. C., and Hasselmo, M. E., editors, Advances in Neural Information Processing Systems 8,
pages 514–520. MIT Press. pp. 30, 107

Williams, C. K. I., Rasmussen, C. E., Schwaighofer, A., and Tresp, V. (2002). Observations on
the Nyström Method for Gaussian Process Prediction. Technical report, University of Edinburgh.
http://www.dai.ed.ac.uk/homes/ckiw/online pubs.html. p. 177

Williams, C. K. I. and Seeger, M. (2001). Using the Nyström Method to Speed Up Kernel Machines.
In Leen, T. K., Diettrich, T. G., and Tresp, V., editors, Advances in Neural Information Processing
Systems 13, pages 682–688. MIT Press. pp. 173, 177

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

238 Bibliography

Williams, C. K. I. and Vivarelli, F. (2000). Upper and Lower Bounds on the Learning Curve for Gaussian
Proccesses. Machine Learning, 40:77–102. pp. 31, 161, 168

Winkler, G. (1995). Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer,
Berlin. p. 219

Wong, E. (1971). Stochastic Processes in Information and Dynamical Systems. McGraw-Hill, New York.
p. 218

Wood, S. and Kohn, R. (1998). A Bayesian Approach to Robust Binary Nonparametric Regression. J.
American Statistical Association, 93(441):203–213. p. 45

Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random Functions Volume I: Basic
Results. Springer Verlag. p. 89

Yang, C., Duraiswami, R., and David, L. (2005). Efficient Kernel Machines Using the Improved Fast
Gauss Transform. In Saul, L. K., Weiss, Y., and Bottou, L., editors, Advances in Neural Information
Processing Systems 17. MIT Press. p. 182

Ylvisaker, D. (1975). Designs on Random Fields. In Srivastava, J. N., editor, A Survey of Statistical
Design and Linear Models, pages 593–608. North-Holland. p. 159

Yuille, A. and Grzywacz, N. M. (1989). A Mathematical Analysis of Motion Coherence Theory. Inter-
national Journal of Computer Vision, 3:155–175. p. 134

Zhang, T. (2004). Statistical Behaviour and Consistency of Classification Methods based on Convex
Risk Minimization (with discussion). Annals of Statistics, 32(1):56–85. p. 157

Zhu, H., Williams, C. K. I., Rohwer, R. J., and Morciniec, M. (1998). Gaussian Regression and Optimal
Finite Dimensional Linear Models. In Bishop, C. M., editor, Neural Networks and Machine Learning.
Springer-Verlag, Berlin. p. 97

Zhu, J. and Hastie, T. J. (2002). Kernel Logistic Regression and the Import Vector Machine. In Diettrich,
T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing Systems
14, pages 1081–1088. MIT Press. p. 185

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Author Index

Abrahamsen, P. 82
Abramowitz, M. 84, 85
Adams, R. 134
Adler, R. J. 80, 81, 83, 191, 218
Amari, S. 102
Ansley, C. F. 29
Ansley, C. F., see Kohn, R. 141
Arató, M. 212
Arfken, G. xv, 134
Aronszajn, N. 129, 130
Arsenin, V. Y., see Tikhonov, A. N. 133

Bach, F. R. 97
Baker, C. T. H. 98, 99
Balakrishnan, N., see Johnson, N. L. 45
Barber, D. 31
Barber, D., see Williams, C. K. I. 41, 45, 48, 49
Bartle, R. G. 204
Bartlett, P. L. 157
Bartlett, P. L., see Lanckriet, G. R. G. 128
Bartlett, P. L., see Smola, A. J. 176
Belongie, S., see Fowlkes, C. 172
Bengio, S., see Collobert, R. 69, 72
Berger, J. O. 22, 35
Bishop, C. M. 45, 196
Bishop, C. M., see Goldberg, P. W. 191
Blake, I. F. 81
Blight, B. J. N. 28
Boyd, S. 206
Boyle, P. 190
Bracewell, R. N. 83, 206
Buckley, C., see Salton, G. 100

Caruana, R. 115
Chatfield, C. 82, 209, 214
Chellappa, R., see Kashyap, R. L. 216

Choi, T. 156
Choudhuri, N. 156
Chow, Y., see Grenander, U. 214, 216
Chu, W. 191
Collins, M. 101
Collobert, R. 69, 72
Conradt, J., see Vijayakumar, S. 22
Cornford, D. 85
Cox, D. D. 156
Craven, P. 112
Cressie, N. A. C. 30, 137, 190
Cristianini, N. 128, 141
Cristianini, N., see Lanckriet, G. R. G. 128
Cristianini, N., see Lodhi, H. 101
Csató, L. 179, 180, 185

Daley, R. 30
David, H. A. 169, 170
David, L., see Yang, C. 182
Davis, P. J. 216
Dawid, A. P. 34
Dellaportas, P. 192
Denker, J., see Simard, P. 73, 195
Devroye, L. 156, 166
Diaconis, P. 156
Diekhans, M., see Jaakkola, T. S. 101, 102, 104
Diggle, P. J. 191, 214, 215
Doob, J. L. 204, 212
Drineas, P. 174
D’Souza, A., see Vijayakumar, S. 22, 24
Duchon, J. 137
Duda, R. O. 146
Duffy, N., see Collins, M. 101
Duraiswami, R., see Yang, C. 182

Eddy, W. F., see Geisser, S. 117

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

240 Author Index

Edgeworth, F. Y. 146
El Ghaoui, L., see Lanckriet, G. R. G. 128
Elisseeff, A., see Cristianini, N. 128
Eskin, E., see Leslie, C. 100, 101, 104

Faul, A. C. 149
Faul, A. C., see Tipping, M. E. 149
Feldman, J. 157
Ferrari Trecate, G. 152
Fine, S. 47, 174
Flannery, B. P., see Press, W. H. 96, 99, 201
Fowlkes, C. 172
Frean, M., see Boyle, P. 190
Freedman, D. 156
Freedman, D., see Diaconis, P. 156
Frieze, A. 174

Gammerman, A., see Saunders, C. 30
Gammerman, A., see Stitson, M. O. 95
Gao, F., see Lin, X. 185
Gao, F., see Wahba, G. 181
Geisser, S. 117
Geman, D., see Geman, S. 216
Geman, S. 216
Ghahramani, Z., see Chu, W. 191
Ghahramani, Z., see Rasmussen, C. E. 110, 192,

193
Ghosal, S., see Choudhuri, N. 156
Gibbs, M. N. 41, 93, 181
Gihman, I. I. 82
Girard, A. 192
Girard, A., see Murray-Smith, R. 191
Girosi, F. 25, 146
Girosi, F., see Poggio, T. 89, 133–135, 147, 176
Girosi, F., see Pontil, M. 146
Goldberg, P. W. 191
Golub, G. H. 172–174, 181, 202
Gong, J., see Wahba, G. 181
Gradshteyn, I. S. 98, 103
Green, P. J. 138
Grenander, U. 214, 216
Grimmett, G. R. 94, 213
Grünwald, P. D. 156
Grzywacz, N. M., see Yuille, A. 134
Guttorp, P., see Sampson, P. D. 92
Györfi, L. 156
Györfi, L., see Devroye, L. 156, 166

Hajek, J. 157
Hand, D. J. 100
Hannan, E. J. 215
Hansen, L. K. 36
Hart, P. E., see Duda, R. O. 146
Hastie, T. J. 24, 25, 95
Hastie, T. J., see Zhu, J. 185
Haussler, D. 101
Haussler, D., see Jaakkola, T. S. 41, 101, 102, 104
Hawkins, D. L. 97
Herbrich, R., see Lawrence, N. 178, 185
Hinton, G. E., see Jacobs, R. A. 192
Hoerl, A. E. 11
Hornik, K. 90
Huijbregts, C. J., see Journel, A. G. 30

Ihara, S. 218

Jaakkola, T. S. 41, 101, 102, 104
Jacobs, R. A. 192
Johnson, D. R., see Wahba, G. 181
Johnson, N. L. 45
Jones, D. R. 193
Jones, M., see Girosi, F. 25
Jordan, M. I. 218
Jordan, M. I., see Bach, F. R. 97
Jordan, M. I., see Bartlett, P. L. 157
Jordan, M. I., see Jacobs, R. A. 192
Jordan, M. I., see Lanckriet, G. R. G. 128
Jordan, M. I., see Seeger, M. 50
Jordan, M. I., see Teh, Y. W. 190
Journel, A. G. 30

Kailath, T. 131
Kammler, D. W. 208
Kandola, J., see Cristianini, N. 128
Kannan, R., see Frieze, A. 174
Kashyap, R. L. 216
Kawanabe, M., see Tsuda, K. 102
Keeling, C. D. 119
Keenan, D. M., see Grenander, U. 214, 216
Keerthi, S. S., see Sundararajan, S. 117
Kennard, R. W., see Hoerl, A. E. 11
Kennedy, M. C., see O’Hagan, A. 194
Kent, J. T. 137
Kimeldorf, G. 132, 136
Klautau, A., see Rifkin, R. 146, 147
Klein, B., see Lin, X. 185

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Author Index 241

Klein, R., see Lin, X. 185
Kohler, M., see Györfi, L. 156
Kohn, R. 141
Kohn, R., see Ansley, C. F. 29
Kohn, R., see Wood, S. 45
Kolmogorov, A. N. 29
König, H. 96
Kotz, S., see Johnson, N. L. 45
Krzyżak, A., see Györfi, L. 156
Kullback, S. 158, 203
Kuss, M. 72, 73

Lanckriet, G. R. G. 128
Langford, J., see Grünwald, P. D. 156
Lauritzen, S. L. 29
Lawrence, N. 178, 185, 196
Lawrence, N., see Seeger, M. 178, 180
Le Cun, Y., see Simard, P. 73, 195
Leith, D., see Solak, E. 191
Leithead, W. E., see Solak, E. 191
Leslie, C. 100, 101, 104
Liisberg, C., see Hansen, L. K. 36
Lin, X. 185
Lindley, D. V. 111
Lindsey, W. C., see Blake, I. F. 81
Lodhi, H. 101
Lugosi, G., see Devroye, L. 156, 166
Luo, Z. 176

MacKay, D. J. C. xiii, xiv, xvi, 45, 84, 92, 109,
110, 166, 167, 178

MacKay, D. J. C., see Gibbs, M. N. 41, 181
Mahoney, M. W., see Drineas, P. 174
Malik, J., see Fowlkes, C. 172
Malzahn, D. 161
Mandelbrot, B. B. 137
Mannila, H., see Hand, D. J. 100
Mardia, K. V. 115
Mardia, K. V., see Kent, J. T. 137
Marshall, R. J., see Mardia, K. V. 115
Matérn, B. 85, 87, 89
Matheron, G. 30
Maxwell, J. C. v
McAllester, D. 164
McAuliffe, J. D., see Bartlett, P. L. 157
McCullagh, P. 37, 38, 138
Meinguet, J. 137
Meir, R. 164

Micchelli, C. A. 161, 190
Minka, T. P. 38, 41, 52, 116
Mitchell, T. J., see Sacks, J. 16, 30
Mitchell, T. M. 2, 165
Morciniec, M., see Zhu, H. 97
Moyeed, R. A., see Diggle, P. J. 191
Mukherjee, S., see Pontil, M. 146
Müller, K.-R., see Schölkopf, B. 99
Müller, K.-R., see Tsuda, K. 102
Murray-Smith, R. 191
Murray-Smith, R., see Girard, A. 192
Murray-Smith, R., see Solak, E. 191

Nabney, I. T., see Cornford, D. 85
Neal, R. M. xiii, 30, 41, 47, 72, 90, 91, 106, 166,

167, 191
Nelder, J., see McCullagh, P. 37, 38, 138
Neumaier, A. 193
Notz, W., see Santner, T. J. 30
Nowlan, S. J., see Jacobs, R. A. 192

Oakley, J. E., see O’Hagan, A. 194
O’Hagan, A. 28, 30, 94, 193, 194
Øksendal, B. 208
Opper, M. 41, 44, 52, 127, 128, 160
Opper, M., see Csató, L. 180, 185
Opper, M., see Ferrari Trecate, G. 152
Opper, M., see Malzahn, D. 161
Ornstein, L. S., see Uhlenbeck, G. E. 86, 212
O’Sullivan, F., see Cox, D. D. 156
O’Sullivan, F. 132, 138
Ott, L., see Blight, B. J. N. 28

Paciorek, C. 93, 94
Papoulis, A. 79, 153, 154, 191, 211, 212
Picard, R. W., see Minka, T. P. 116
Plaskota, L. 161, 169
Plate, T. A. 95
Platt, J. C. 69, 70, 144, 145, 147, 148
Poggio, T. 89, 133–135, 147, 154, 176
Poggio, T., see Girosi, F. 25
Pontil, M. 146
Pontil, M., see Micchelli, C. A. 190
Press, W. H. 96, 99, 201

Quiñonero-Candela, J. 177
Quiñonero-Candela, J., see Girard, A. 192
Quiñonero-Candela, J., see Rasmussen, C. E. 150,

176

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

242 Author Index

Rasmussen, C. E. 30, 110, 150, 176, 192, 193
Rasmussen, C. E., see Girard, A. 192
Rasmussen, C. E., see Kuss, M. 72, 73
Rasmussen, C. E., see Solak, E. 191
Rasmussen, C. E., see Williams, C. K. I. 30, 107,

177
Rätsch, G., see Tsuda, K. 102
Raynor, W. J., see O’Sullivan, F. 132, 138
Rifkin, R. 146, 147
Ripley, B. 30, 35
Ritter, K. 97, 159, 161, 169, 193
Rohwer, R. J., see Zhu, H. 97
Rousseeuw, P. J. 146
Roy, A., see Choudhuri, N. 156
Ryzhik, I. M., see Gradshteyn, I. S. 98, 103

Saad, D., see Barber, D. 31
Sacks, J. 16, 30
Saitoh, S. 129
Salamon, P., see Hansen, L. K. 36
Salton, G. 100
Sampson, P. D. 92
Santner, T. J. 30
Saunders, C. 30, 101
Schaal, S., see Vijayakumar, S. 22, 24
Scheinberg, K., see Fine, S. 47, 174
Schervish, M. J., see Choi, T. 156
Schervish, M. J., see Paciorek, C. 93, 94
Schoenberg, I. J. 86, 132, 138
Schölkopf, B. xvi, 73, 89–91, 99, 129, 130, 133,

141, 144, 147, 173, 188, 195, 196
Schölkopf, B., see Smola, A. J. 173, 174
Schwaighofer, A. 181, 184
Schwaighofer, A., see Williams, C. K. I. 177
Scott, D. W. 25
Seeger, M. 41, 46, 50, 54, 127, 145, 161–165,

178–180, 186
Seeger, M., see Lawrence, N. 178, 185
Seeger, M., see Teh, Y. W. 190
Seeger, M., see Williams, C. K. I. 173, 177
Shawe-Taylor, J. 99
Shawe-Taylor, J., see Cristianini, N. 128, 141
Shawe-Taylor, J., see Lodhi, H. 101
Shawe-Taylor, J., see Saunders, C. 101
Shepp, L. A. 139
Shibata, T., see Vijayakumar, S. 22
Silverman, B. W. 25, 138, 153, 154, 170, 175
Silverman, B. W., see Green, P. J. 138

Simard, P. 73, 195
Skorohod, A. V., see Gihman, I. I. 82
Smola, A. J. 173, 174, 176
Smola, A. J., see Schölkopf, B. xvi, 73, 89–91, 99,

129, 130, 133, 141, 144, 147, 173, 188, 195, 196
Smola, A. J., see Vishwanathan, S. V. N. 101
Smyth, P., see Hand, D. J. 100
Solak, E. 191
Sollich, P. 145, 150, 154, 160, 161
Sonnenburg, S., see Tsuda, K. 102
Stafford Noble, W., see Leslie, C. 100, 101, 104
Stegun, I. A., see Abramowitz, M. 84, 85
Stein, M. L. 82, 83, 85–87, 115, 137, 154, 157, 158,

161, 212
Steinwart, I. 157
Stephens, D. A., see Dellaportas, P. 192
Stirzaker, D. R., see Grimmett, G. R. 94, 213
Stitson, M. O. 95
Sundararajan, S. 117
Suykens, J. A. K. 147
Svensen, M., see Bishop, C. M. 196
Szeliski, R. 135, 137

Tawn, J. A., see Diggle, P. J. 191
Teh, Y. W. 190
Teukolsky, S. A., see Press, W. H. 96, 99, 201
Thomas-Agnan, C. 154
Thompson, P. D. 30
Tibshirani, R. J., see Hastie, T. J. 24, 25, 95
Tikhonov, A. N. 133
Tipping, M. E. 149
Tipping, M. E., see Faul, A. C. 149
Tresp, V. 180, 181, 185, 187
Tresp, V., see Schwaighofer, A. 181, 184
Tresp, V., see Williams, C. K. I. 177
Tsuda, K. 102

Uhlenbeck, G. E. 86, 212

Valiant, L. G. 161
Van Loan, C. F., see Golub, G. H. 172–174, 181,

202
Vandenberghe, L., see Boyd, S. 206
Vanderwalle, J., see Suykens, J. A. K. 147
Vapnik, V. N. 36, 140, 141, 181
Vapnik, V. N., see Stitson, M. O. 95
Vempala, S., see Frieze, A. 174
Vetterling, W. T., see Press, W. H. 96, 99, 201

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Author Index 243

Victorri, B., see Simard, P. 73, 195
Vijayakumar, S. 22, 24
Vinokourov, A., see Saunders, C. 101
Vishwanathan, S. V. N. 101
Vivarelli, F. 89
Vivarelli, F., see Opper, M. 160
Vivarelli, F., see Williams, C. K. I. 31, 161, 168
von Mises, R. 200
Voorhees, H., see Poggio, T. 154
Vovk, V., see Saunders, C. 30
Vovk, V., see Stitson, M. O. 95

Wahba, G. 29, 95, 112, 117, 118, 129, 131,
137–139, 157, 176, 181

Wahba, G., see Craven, P. 112
Wahba, G., see Kimeldorf, G. 132, 136
Wahba, G., see Lin, X. 185
Wahba, G., see Luo, Z. 176
Wahba, G., see Micchelli, C. A. 161
Walk, H., see Györfi, L. 156
Wasilkowski, G. W., see Ritter, K. 97
Watkins, C. J. C. H. 100, 101
Watkins, C. J. C. H., see Lodhi, H. 101
Watkins, C. J. C. H., see Stitson, M. O. 95
Wegman, E. J. 129, 130
Welch, W. J., see Sacks, J. 16, 30
Wendland, H. 88
Weston, J., see Leslie, C. 100, 101, 104
Weston, J., see Stitson, M. O. 95
Whittle, P. 30, 216
Whorf, T. P., see Keeling, C. D. 119
Widom, H. 97
Wiener, N. 29

Williams, B. J., see Santner, T. J. 30
Williams, C. K. I. 30, 31, 41, 45, 48, 49, 91, 107,

161, 168, 173, 177
Williams, C. K. I., see Bishop, C. M. 196
Williams, C. K. I., see Cornford, D. 85
Williams, C. K. I., see Ferrari Trecate, G. 152
Williams, C. K. I., see Goldberg, P. W. 191
Williams, C. K. I., see Seeger, M. 178, 180
Williams, C. K. I., see Shawe-Taylor, J. 99
Williams, C. K. I., see Sollich, P. 154
Williams, C. K. I., see Vivarelli, F. 89
Williams, C. K. I., see Zhu, H. 97
Winkler, G. 219
Winther, O., see Csató, L. 180, 185
Winther, O., see Opper, M. 41, 44, 52, 127, 128
Wong, E. 218
Wood, S. 45
Woźniakowski, H., see Ritter, K. 97
Wynn, H. P., see Sacks, J. 16, 30

Xiang, D., see Lin, X. 185

Yaglom, A. M. 89
Yandell, B. S., see O’Sullivan, F. 132, 138
Yang, C. 182
Ylvisaker, D. 159
Yuille, A. 134
Yuille, A., see Poggio, T. 154

Zhang, T. 157
Zhang, T., see Meir, R. 164
Zhu, H. 97
Zhu, J. 185

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Subject Index

alignment, 128
anisotropy, 89
AR process, see autoregressive process
ARD, see automatic relevance

determination
ARMA process, see autoregressive moving-average

process
automatic relevance

determination, 106
autoregressive moving-average process, 217

noise model, 191
autoregressive process, 207

Bayes classifier, 36
Bayes’ theorem, 200
Bayesian committee machine, 180
BCM, see Bayesian committee machine
bias

inductive, 165
binary classification, 33
bits, 203
blitzkrieging, see fast Gaussian processes
Bochner’s theorem, 82
Brownian bridge, 213
Brownian motion, see Wiener process

canonical hyperplane, 142
Cholesky decomposition, 202
Christ, bowels of, 111
classification, 33

binary, 33
least-squares, 146

probabilistic, 148
multi-class, 33
probabilistic, 33

classifier
Gibbs, 163
predictive, 163

cokriging, 190
consistency, 155
convex

function, 206
set, 206

covariance
predictive, 18

covariance function, 13, 79, see also kernel
ANOVA, 95
compact support, 87
dot product, 89
exponential, 85
γ-exponential, 86
Gaussian, see covariance function, squared ex-

ponential
inhomogeneous polynomial, 89
Matérn, 84
neural network, 91
Ornstein-Uhlenbeck, 86
OU, see covariance function, Ornstein-

Uhlenbeck
periodic, 92, 119
polynomial, 89

piecewise, 87
radial basis function, see covariance function,

squared exponential
rational quadratic, 86
RBF, see covariance function, squared expo-

nential
SE, see covariance function, squared exponen-

tial
squared exponential, 14, 83

covariance matrix, 80
Cromwell’s dictum, 111
cross-validation, 111

generalized, 112
leave-one-out, 111

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

246 Subject Index

dataset
robot, inverse dynamics, 23
USPS, 63

decision region, 36
decision surface, 36
degenerate, see kernel, degenerate
degrees of freedom, 25
derivative observations, 191
Dirichlet process, 192
discriminative approach, 34

eigenfunction, 96
eigenvalue, 96
entropy, 203
EP, see expectation propagation
ε-insensitive error function, 145
equivalent kernel, 25, 151
error

generalization, 159
error function

ε-insensitive, 145
hinge, 145

error-reject curve, 36, 68
errors-in-variables regression, 192
evidence, see marginal likelihood
expectation propagation, 52
experimental design

optimal, 159

factor analysis, 89, 107
feature space, 11
Fisher information matrix, 102
Fisher kernel, 101
Fourier transform, 206
fractal, 137

gamma distribution, 87, 194
Gaussian distribution, 200
Gaussian Markov process, 207
Gaussian process, 13
Gaussian process classification, 34
Gaussian process latent variable model, 196
Gaussian process regression, 16
generalization error, 108, 159
generative approach, 34
generative topographic mapping, 196
geostatistics, 30
GMP, see Gaussian Markov process

GP, see Gaussian process
GPC, see Gaussian process classification
GPLVM, see Gaussian process latent variable model
GPR, see Gaussian process regression
Gram matrix, 80
Green’s function, 134
GTM, see generative topographic mapping

hidden Markov model, 102
hinge error function, 145
hyperparameters, 20, 106
hyperplane

canonical, 142

index set, 13
informative vector machine, 178
integrals, evaluation of, 193
intrinsic random function, 137
invariances, 195
IRLS, see iteratively reweighted least squares
isotropy, 80
iteratively reweighted least squares, 38
IVM, see informative vector machine

jitter, 47

kernel, 80, see also covariance function
bag-of-characters, 100
degenerate, 94, 97
equivalent, 151
Fisher, 101
k-spectrum, 100
nondegenerate, 97
positive definite, 80
string, 100
tangent of posterior odds, 102

kernel classifier, 167
kernel PCA, 99
kernel ridge regression, see regression, ridge, kernel
kernel smoother, 25, 167
kernel trick, 12
kriging, 30
Kullback-Leibler divergence, 54, 203

Laplace approximation, 41
latent variable model, 196
learning curve, 159
learning, supervised, 1

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Subject Index 247

least-squares classification, 146
leave-one-out, 148
leave-one-out cross-validation, 111
length-scale, characteristic, 14, 83, 106
likelihood, 8, 37

logistic, 35, 43
multiple-logistic, 38
non-Gaussian, 33, 191
probit, 35, 43

linear classifier, 37
linear regression, 8
link function, 35
log odds ratio, 37
logistic function, 35
logistic regression, 35
LOO, see leave-one-out
loss

negative log probability, 23
squared, 22
zero-one, 36

loss function, 21
loss matrix, 36
LSC, see least-squares classification

MAP, see maximum a posteriori
margin

functional, 142
geometrical, 142

marginal likelihood, 18, 112
marginalization property, 13
Markov chain Monte Carlo, 41
Markov random field, 218
matrix

covariance, 80
Fisher information, 102
Gram, 80
inversion lemma, 201
loss, 36
partitioned inversion of, 201
positive definite, 80
positive semidefinite, 80

maximum a posteriori, see penalized maximum like-
lihood

maximum likelihood
penalized, 10

MCMC, see Markov chain Monte Carlo
mean function, 13, 27

mean square continuity, 81
mean square differentiability, 81
mean standardized log loss, 23
mean-field approximation, 52
measure, 204
Mercer’s theorem, 96
mixture of experts, 192
ML-II, see type II maximum likelihood
model

non-parametric, 166
parametric, 166
semi-parametric, 166

Moore-Aronszajn theorem, 130
MS continuity, see mean square continuity
MS differentiability, see mean square differentiabil-

ity
MSLL, see mean standardized log loss
multi-class classification, 33
multi-task learning, 115
multiple outputs, 190

Nadaraya-Watson estimator, 25, 155
nats, 203
neural network, 90, 166
Newton’s method, 43, 49
noise model, 8, 16

correlated, 190
heteroscedastic, 191

norm
Frobenius, 202

null space, 137
Nyström approximation, 172
Nyström method, 177

Occam’s razor, 110
one-versus-rest, 147
operator, integral, 80
optimal experimental design, 159
outputs, multiple, 190

P1NN, see probabilistic one nearest neighbour
PAC-Bayesian theorem

McAllester, 163
Seeger, 164

penalized maximum likelihood estimate, 10
PLSC, see probabilistic least-squares classification
positive definite matrix, 80
positive semidefinite matrix, 80

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c© 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

248 Subject Index

posterior process, 18
PP, see projected process approximation
prediction

classification
averaged, 44
MAP, 45

probabilistic classification, 33
probabilistic least-squares classification, 147
probabilistic one nearest neighbour, 69
probability

conditional, 199
joint, 199
marginal, 199

probit regression, 35
projected process approximation, 178
pseudo-likelihood, 117

quadratic form, 80
quadratic programming, 142

regression
errors-in-variables, 192
Gaussian process, 16
linear, 8
polynomial, 11, 28
ridge, 11, 132

kernel, 30, 132
regularization, 132
regularization network, 135
reject option, 36
relative entropy, see Kullback Leibler divergence
relevance vector machine, 149
representer theorem, 132
reproducing kernel Hilbert space, 129
response function, 35
ridge regression, see regression, ridge
risk, 22, 36
RKHS, see reproducing kernel Hilbert space
RVM, see relevance vector machine

scale mixture, 87, 194
SD, see subset of datapoints
SDE, see stochastic differential equation
SMSE, see standardized mean squared error
softmax, 38
splines, 136
SR, see subset of regressors
standardized mean squared error, 23

stationarity, 79
stochastic differential equation, 207
Student’s t process, 194
subset of datapoints, 177
subset of regressors, 175
supervised learning, 1
support vector, 143
support vector machine, 141

soft margin, 143
support vector regression, 145
SVM, see support vector machine
SVR, see support vector regression

tangent of posterior odds kernel, 102
TOP kernel, see tangent of posterior odds kernel
transduction, 181
type II maximum likelihood, 109

uncertain inputs, 192
upcrossing rate, 80
USPS dataset, 63

weight function, 25
weight vector, 8
Wiener process, 213

integrated, 139
tied-down, 213

Wiener-Khintchine theorem, 82, 209

Yule-Walker equations, 215

	GMM
	GP-book
	Series Foreword
	Preface
	Symbols and Notation
	Introduction
	A Pictorial Introduction to Bayesian Modelling
	Roadmap

	Regression
	Weight-space View
	The Standard Linear Model
	Projections of Inputs into Feature Space

	Function-space View
	Varying the Hyperparameters
	Decision Theory for Regression
	An Example Application
	Smoothing, Weight Functions and Equivalent Kernels
	* Incorporating Explicit Basis Functions
	Marginal Likelihood

	History and Related Work
	Exercises

	Classification
	Classification Problems
	Decision Theory for Classification

	Linear Models for Classification
	Gaussian Process Classification
	The Laplace Approximation for the Binary GP Classifier
	Posterior
	Predictions
	Implementation
	Marginal Likelihood

	* Multi-class Laplace Approximation
	Implementation

	Expectation Propagation
	Predictions
	Marginal Likelihood
	Implementation

	Experiments
	A Toy Problem
	One-dimensional Example
	Binary Handwritten Digit Classification Example
	10-class Handwritten Digit Classification Example

	Discussion
	* Appendix: Moment Derivations
	Exercises

	Covariance Functions
	Preliminaries
	* Mean Square Continuity and Differentiability

	Examples of Covariance Functions
	Stationary Covariance Functions
	Dot Product Covariance Functions
	Other Non-stationary Covariance Functions
	Making New Kernels from Old

	Eigenfunction Analysis of Kernels
	* An Analytic Example
	Numerical Approximation of Eigenfunctions

	Kernels for Non-vectorial Inputs
	String Kernels
	Fisher Kernels

	Exercises

	Model Selection and Adaptation of Hyperparameters
	The Model Selection Problem
	Bayesian Model Selection
	Cross-validation
	Model Selection for GP Regression
	Marginal Likelihood
	Cross-validation
	Examples and Discussion

	Model Selection for GP Classification
	* Derivatives of the Marginal Likelihood for Laplace's Approximation
	* Derivatives of the Marginal Likelihood for EP
	Cross-validation
	Example

	Exercises

	Relationships between GPs and Other Models
	Reproducing Kernel Hilbert Spaces
	Regularization
	* Regularization Defined by Differential Operators
	Obtaining the Regularized Solution
	The Relationship of the Regularization View to Gaussian Process Prediction

	Spline Models
	* A 1-d Gaussian Process Spline Construction

	* Support Vector Machines
	Support Vector Classification
	Support Vector Regression

	* Least-squares Classification
	Probabilistic Least-squares Classification

	* Relevance Vector Machines
	Exercises

	Theoretical Perspectives
	The Equivalent Kernel
	Some Specific Examples of Equivalent Kernels

	* Asymptotic Analysis
	Consistency
	Equivalence and Orthogonality

	* Average-case Learning Curves
	* PAC-Bayesian Analysis
	The PAC Framework
	PAC-Bayesian Analysis
	PAC-Bayesian Analysis of GP Classification

	Comparison with Other Supervised Learning Methods
	* Appendix: Learning Curve for the Ornstein-Uhlenbeck Process
	Exercises

	Approximation Methods for Large Datasets
	Reduced-rank Approximations of the Gram Matrix
	Greedy Approximation
	Approximations for GPR with Fixed Hyperparameters
	Subset of Regressors
	The Nyström Method
	Subset of Datapoints
	Projected Process Approximation
	Bayesian Committee Machine
	Iterative Solution of Linear Systems
	Comparison of Approximate GPR Methods

	Approximations for GPC with Fixed Hyperparameters
	* Approximating the Marginal Likelihood and its Derivatives
	* Appendix: Equivalence of SR and GPR Using the Nyström Approximate Kernel
	Exercises

	Further Issues and Conclusions
	Multiple Outputs
	Noise Models with Dependencies
	Non-Gaussian Likelihoods
	Derivative Observations
	Prediction with Uncertain Inputs
	Mixtures of Gaussian Processes
	Global Optimization
	Evaluation of Integrals
	Student's t Process
	Invariances
	Latent Variable Models
	Conclusions and Future Directions

	Appendix Mathematical Background
	Joint, Marginal and Conditional Probability
	Gaussian Identities
	Matrix Identities
	Matrix Derivatives
	Matrix Norms

	Cholesky Decomposition
	Entropy and Kullback-Leibler Divergence
	Limits
	Measure and Integration
	Lp Spaces

	Fourier Transforms
	Convexity

	Appendix Gaussian Markov Processes
	Fourier Analysis
	Sampling and Periodization

	Continuous-time Gaussian Markov Processes
	Continuous-time GMPs on R
	The Solution of the Corresponding SDE on the Circle

	Discrete-time Gaussian Markov Processes
	Discrete-time GMPs on Z
	The Solution of the Corresponding Difference Equation on PN

	The Relationship Between Discrete-time and Sampled Continuous-time GMPs
	Markov Processes in Higher Dimensions

	Appendix Datasets and Code
	Bibliography
	Author Index
	Subject Index

